The influence of radiative-convective heat transfer on ignition of the drops of coal-water fuel


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Simulation results are presented for thermal treatment and ignition of coal-water fuel drops under conditions of radiative-convective heating. The data demonstrate reasonbble compliance between theory and experiment for the integral parameter of ignition process — the delay time of ignition. The radiative component of heat transfer is significant for parameters and conditions of ignition. The increase in the fuel particle size makes this influence bigger. Prognostic potential was evaluated for differnet models of radiative heat tarnsfer. The delay time of ignition obtained from radiative heat transfer model “grey wall” is in good agreement with experimental data. Meanwhile, the method based on radiation diffusion approximation gives the simulation data for delay time much higher than experimental data. It is confirmed that while the process of inflammation of a coal-water particle, the key impotance belongs not to fuel-oxidizer reactions, but rather to a chain of heat treatment events, such as radiative-convective heating, water evaporation, and thermal decomposition of fuel.

作者简介

S. Syrodoy

Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: ssyrodoy@yandex.ru
俄罗斯联邦, Tomsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018