Development of Active Dielectric Si-Er Nanoantennas
- Авторлар: Ageev E.I.1, Dyatlovich A.A.1, Yaroshenko V.V.1, Larin A.O.1, Dvoretckaia L.N.2, Mozharov A.M.2, Mukhin I.S.3, Zuev D.A.1
-
Мекемелер:
- ITMO University
- Alferov Saint Petersburg National Research Academic University, RAS
- Higher School of Engineering Physics, Peter the Great St. Petersburg Polytechnic University
- Шығарылым: Том 117, № 1 (2023): ТЕМАТИЧЕСКИЙ БЛОК: СОВРЕМЕННЫЕ ПРОБЛЕМЫ ФОТОНИКИ ИНФРАКРАСНОГО ДИАПАЗОНА
- Беттер: 31-40
- Бөлім: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://journal-vniispk.ru/1605-8070/article/view/299406
- DOI: https://doi.org/10.22204/DOI:%2010.22204/2410-4639-2023-117-01-31-40
- ID: 299406
Дәйексөз келтіру
Толық мәтін
Аннотация
In this work, theoretical and experimental studies on the development of sources emitting in the near infrared range based on active nanoantennas from silicon nanoparticles doped with erbium ions (Si–Er) are made. Numerical simulations have demonstrated an increase in the Purcell factor by two orders of magnitude for nanoparticles with electric or magnetic dipole resonance at the erbium radiation wavelength. The possibility of redistributing the radiation power of a point dipole source between a free space and a surface plasmon polariton by changing the height of the gap between the nanoparticle and the gold substrate was demonstrated. An experimental implementation of nanoantennas was also carried out. Due to femtosecond laser annealing, the crystallization of the Si–Er film and nanoparticles are made and the effect of laser-induced crystallization on their radiative properties is studied. Active nanoantennas have been developed and studied to control the emission of erbium ions in the near-IR range, representing resonant silicon nanocylinders doped with erbium. The results obtained are promising for the creation of nanophotonic telecommunication devices compatible with existing silicon fabrication technologies.
Негізгі сөздер
Авторлар туралы
Eduard Ageev
ITMO University
Хат алмасуға жауапты Автор.
Email: eduard.ageev@metalab.ifmo.ru
Ресей, 9 Lomonosova Str., Saint Petersburg, 191002, Russia
Anna Dyatlovich
ITMO University
Email: anna.dyatlovich@metalab.ifmo.ru
Ресей, 9 Lomonosova Str., Saint Petersburg, 191002, Russia
Vitaly Yaroshenko
ITMO University
Email: v.yaroshenko@metalab.ifmo.ru
Ресей, 9 Lomonosova Str., Saint Petersburg, 191002, Russia
Artem Larin
ITMO University
Email: Artem.larin@metalab.ifmo.ru
9 Lomonosova Str., Saint Petersburg, 191002, Russia
Liliia Dvoretckaia
Alferov Saint Petersburg National Research Academic University, RAS
Email: Liliyabutler@gmail.com
Ресей, 8/3 Khlopin Str., Saint Petersburg, 194021, Russia
Alexey Mozharov
Alferov Saint Petersburg National Research Academic University, RAS
Email: mozharov@spbau.ru
Ресей, 8/3 Khlopin Str., Saint Petersburg, 194021, Russia
Ivan Mukhin
Higher School of Engineering Physics, Peter the Great St. Petersburg Polytechnic University
Email: muhin_is@spbstu.ru
Director
Ресей, 29 Polytekhnicheskaya Str.,Saint Petersburg, 195251, RussiaDmitry Zuev
ITMO University
Email: d.zuev@metalab.ifmo.ru
Ресей, 9 Lomonosova Str., Saint Petersburg, 191002, Russia
Әдебиет тізімі
- D.N. Basov, M.M. Fogler. Nat. Nanotechnol., 2017, 12(3), 187. doi: 10.1038/nnano.2016.283.
- A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk. Science, 2016, 354(6314), aag2472. doi: 10.1126/science.aag2472.
- A. Faraon, P.E. Barclay, C. Santori, K.-M.C. Fu, R.G. Beausoleil. Nat. Photonics, 2011, 5(5), 301. doi: 10.1038/nphoton.2011.52.
- N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V.A. Turek, U.F. Keyser, J.J. Baumberg, O. Hess. ACS Photonics, 2018, 5(1), 186. doi: 10.1021/acsphotonics.7b00668.
- T.B. Hoang, G.M. Akselrod, C. Argyropoulos, J. Huang, D.R. Smith, M.H. Mikkelsen. Nat. Commun., 2015, 6, 7788. doi: 10.1038/ncomms8788.
- H. Aouani, M. Rahmani, M. Navarro-Cía, S.A. Maier. Nat. Nanotechnol., 2014, 9(4), 290. doi: 10.1038/nnano.2014.27.
- N. Bonod, Y. Kivshar. Comptes Rendus Phys., 2020, 21(4–5), 425. doi: 10.5802/crphys.31.
- S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, P. Belov. Nano Lett., 2015, 15(9), 6187. doi: 10.1021/acs.nanolett.5b02534.
- J.S. Totero Gongora, A.E. Miroshnichenko, Y.S. Kivshar, A. Fratalocchi. Nat. Commun., 2017, 8(1), 15535. doi: 10.1038/ncomms15535.
- A.S. Zalogina, R.S. Savelev, E.V. Ushakova, G.P. Zograf, F.E. Komissarenko, V.A. Milichko, S.V. Makarov, D.A. Zuev, I.V. Shadrivov. Nanoscale, 2018, 10(18), 8721. doi: 10.1039/C7NR07953B.
- V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, J. Schilling. Nano Lett., 2017, 17(11), 6886. doi: 10.1021/acs.nanolett.7b03248.
- E.Y. Tiguntseva, G.P. Zograf, F.E. Komissarenko, D.A. Zuev, A.A. Zakhidov, S.V. Makarov, Y.S. Kivshar. Nano Lett., 2018, 18(2), 1185. doi: 10.1021/acs.nanolett.7b04727.
- J. Xiang, J. Chen, Q. Dai, S. Tie, S. Lan, A.E. Miroshnichenko. Phys. Rev. Appl., 2020, 13(1), 014003. doi: 10.1103/PhysRevApplied.13.014003.
- Y. Yang, H. Kang, C. Jung, J. Seong, N. Jeon, J. Kim, D.K. Oh, J. Park, H. Kim, J. Rho. ACS Photonics, 2023, 10(2), 307. doi: 10.1021/acsphotonics.2c01341.
- D.G. Baranov, R.S. Savelev, S.V. Li, A.E. Krasnok, A. Alù. Laser Photon. Rev., 2017, 11(3), 1600268. doi: 10.1002/lpor.201600268.
- T.H. Taminiau, S. Karaveli, N.F. Van Hulst, R. Zia. Nat. Commun., 2012, 3(1), 979. doi: 10.1038/ncomms1984.
- H. Nabika, S. Deki. J. Phys. Chem. B, 2003, 107(35), 9161. doi: 10.1021/jp035741b.
- A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’Yanchuk, B.N. Chichkov. Phys. Rev. B, 2010, 82(4), 045404. doi: 10.1103/PhysRevB.82.045404.
- B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, H.T. Miyazaki. Nano Lett., 2016, 16(8), 5191. doi: 10.1021/acs.nanolett.6b02200.
- A.E. Krasnok, A.P. Slobozhanyuk, C.R. Simovski, S.A. Tretyakov, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, P.A. Belov. Sci. Rep., 2015, 5(1), 12956. doi: 10.1038/srep12956.
- M.A. Green. Sol. Energy Mater. Sol. Cells, 2008, 92(11), 1305. doi: 10.1016/j.solmat.2008.06.009.
- V. Yaroshenko, D. Zuev, A.B. Evlyukhin. Surfaces and Interfaces, 2022, 34, 102344. doi: 10.1016/j.surfin.2022.102344.
- A.V. Kabashin, A. Singh, M.T. Swihart, I.N. Zavestovskaya, P.N. Prasad. ACS Nano, 2019, 13(9), 9841. doi: 10.1021/acsnano.9b04610.
- M.A. van de Haar, J. van de Groep, B.J.M. Brenny, A. Polman. Opt. Express, 2016, 24(3), 2047. doi: 10.1364/OE.24.002047.
- I. Staude, J. Schilling. Nat. Photonics, 2017, 11(5), 274. doi: 10.1038/nphoton.2017.39.
- D.M. Zhigunov, A.B. Evlyukhin, A.S. Shalin, U. Zywietz, B.N. Chichkov. ACS Photonics, 2018, 5(3), 977. doi: 10.1021/acsphotonics.7b01275.
- C. Zaza, I.L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J.J. Sáenz, S.A. Maier, F.D. Stefani. ACS Photonics, 2019, 6(4), 815. doi: 10.1021/acsphotonics.8b01619.
- M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, M. Abbarchi. Nanoscale, 2016, 8(5), 2844. doi: 10.1039/C5NR07597A.
- S. Syubaev, E. Mitsai, S. Starikov, A. Kuchmizhak. Opt. Lett., 2021, 46(10), 2304. doi: 10.1364/OL.425809.
- K. Bronnikov, A. Dostovalov, A. Cherepakhin, E. Mitsai, A. Nepomniaschiy, S.A. Kulinich, A. Zhizhchenko, A. Kuchmizhak. Materials (Basel), 2020, 13(22), 5296. doi: 10.3390/ma13225296.
- A.O. Larin, E.I. Ageev, L.N. Dvoretckaia, A.M. Mozharov, I.S. Mukhin, D.A. Zuev. JETP Lett., 2021, 114(11), 681. doi: 10.1134/S0021364021230090.
- A.O. Larin, L.N. Dvoretckaia, A.M. Mozharov, I.S. Mukhin, A.B. Cherepakhin, I.I. Shishkin, E.I. Ageev, D.A. Zuev. Adv. Mater., 2021, 33(16), 2005886. doi: 10.1002/adma.202005886.
- A. Polman. Phys. B Condens. Matter, 2001, 300(1), 78. doi: 10.1016/S0921-4526(01)00573-7.
- Y. Nagasaki, M. Suzuki, I. Hotta, J. Takahara. ACS Photonics, 2018, 5(4), 1460. doi: 10.1021/acsphotonics.7b01467.
- A. Prnová, J. Valúchová, N. Mutlu, M. Parchovianský, R. Klement, A. Plško, D. Galusek. J. Therm. Anal. Calorim., 2020, 142(1), 129. doi: 10.1007/s10973-020-09816-3.
Қосымша файлдар
