Energy Migration in Upconversion Nanocrystals
- Autores: Generalova A.N.1, Akasov R.A.2, Demina P.A.2, Khaydukov K.V.2, Kuzyaeva V.I.2, Solovyeva D.O.1, Mochalov K.E.1, Semchishen V.A.2, Khaydukov E.V.2
-
Afiliações:
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS
- Federal Scientific Research Center «Crystallography and Photonics», RAS
- Edição: Volume 117, Nº 1 (2023): ТЕМАТИЧЕСКИЙ БЛОК: СОВРЕМЕННЫЕ ПРОБЛЕМЫ ФОТОНИКИ ИНФРАКРАСНОГО ДИАПАЗОНА
- Páginas: 41-56
- Seção: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://journal-vniispk.ru/1605-8070/article/view/299511
- DOI: https://doi.org/10.22204/2410-4639-2023-117-01-41-56
- ID: 299511
Citar
Texto integral
Resumo
The processes of energy migration in upconvertion nanocrystals (UCNPs) governing the quantum efficiency under pulse excitation at 975 nm, which is a decisive factor for the widespread use of UCNPs, have been studied. The treatment by picosecond laser radiation leads to a controlled nanotransformation of a three-dimensional luminescent structure into a one-dimensional one through the formation of particles with a structure resembling a “medusa”.
The upconversion process in the one-dimensional structure occurs due to the energy migration between Yb3+, as in the case of nanoparticles. An approach is proposed for evaluating the efficiency of nonradiative energy transfer in a complex of UCNPs with a fluorophore. It takes into account the contribution of energy migration between sensitizer ions. The use of UCNPs in photothermal therapy is shown to be promising due to the large absorption cross section of the Yb3+ sensitizer. The cellular response to hyperthermia involving UCNPs is demonstrated by measuring heat shock protein expression.
Sobre autores
Alla Generalova
Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS
Autor responsável pela correspondência
Email: angeneralova@gmail.com
Rússia, 16/10 Miklukho-Maklaya Str., Moscow, 117997, Russia
Roman Akasov
Federal Scientific Research Center «Crystallography and Photonics», RAS
Email: roman.akasov@gmail.com
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia
Polina Demina
Federal Scientific Research Center «Crystallography and Photonics», RAS
Email: Polidemina1207@yandex.ru
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia
Kirill Khaydukov
Federal Scientific Research Center «Crystallography and Photonics», RAS
Email: haidukov_11@mail.ru
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia
Valeriia Kuzyaeva
Federal Scientific Research Center «Crystallography and Photonics», RAS
Email: kuzyaeva.valeriya@mail.ru
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia
Daria Solovyeva
Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS
Email: d.solovieva@mail.ru
Rússia, 16/10 Miklukho-Maklaya Str., Moscow, 117997, Russia
Konstantin Mochalov
Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS
Email: mochalov@mail.ru
Rússia, 16/10 Miklukho-Maklaya Str., Moscow, 117997, Russia
Vladimir Semchishen
Federal Scientific Research Center «Crystallography and Photonics», RAS
Email: Sem_47@mail.ru
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia
Evgeny Khaydukov
Federal Scientific Research Center «Crystallography and Photonics», RAS
Email: khaydukov@mail.ru
Rússia, 59 Leninsky Ave., Moscow, 119333, Russia
Bibliografia
- L. Cheng, C. Wang, Z. Liu. Nanoscale, 2013, 5(1), 23. doi: 10.1039/c2nr32311g.
- D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, J. Lin. Chem. Soc. Rev., 2015, 44(6), 1416. doi: 10.1039/C4CS00155A.
- E.V. Khaydukov, V.A. Semchishen, V.N. Seminogov, V.I. Sokolov, A.P. Popov, A.V. Bykov, A.V. Nechaev, A.S. Akhmanov, V.Y. Panchenko, A.V. Zvyagin. Laser Phys. Lett., 2014, 11, 095602. doi: 10.1088/1612-2011/11/9/095602.
- J. Shan, Y. Ju. Nanotechnology, 2009, 20(27), 275603. doi: 10.1088/0957-4484/20/27/275603.
- A. Nadort, J. Zhao, E.M. Goldys. Nanoscale, 2016, 8(27), 13099. doi: 10.1039/c5nr08477f.
- A.N. Generalova, B.N. Chichkov, E.V. Khaydukov. Adv. Colloid Interface Sci., 2017, 245, 1. doi: 10.1016/j.cis.2017.05.006.
- C.T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, S. Andersson-Engels. Laser Photon., 2013, 7(5), 663. doi: 10.1002/lpor.201200052.
- M. Haase, H. Schäfer. Angew. Chemie Int. Ed., 2011, 50(26), 5808. doi: 10.1002/anie.201005159.
- D.T. Klier, M.U. Kumke. J. Mater. Chem. C, 2015, 3(42), 11228. doi: 10.1039/c5tc02218e.
- А.И. Бурштейн. ЖЭТФ, 1972, 62(5), 1695.
- J.G. Solé, L. Bausá, D. Jaque. An Introduction to the Optical Spectroscopy of Inorganic Solids, UK, Chichester: Wiley, 2005, 304 pp.
- P. Villanueva-Delgado, K.W. Krämer, R. Valiente. J. Phys. Chem. C, 2015, 119(41), 23648. doi: 10.1021/acs.jpcc.5b06770.
- S. Alyatkin, I. Asharchuk, K. Khaydukov, A. Nechaev, O. Lebedev, Y. Vainer, V. Semchishen, E. Khaydukov. Nanotechnology, 2017, 28(3), 035401. doi: 10.1088/1361-6528/28/3/035401.
- A.N. Generalova, V.A. Oleinikov, E.V. Khaydukov. Adv. Colloid Interface Sci., 2021, 297, 102543. doi: 10.1016/j.cis.2021.102543.
- L. Sajti, D.N. Karimov, V.V. Rocheva, N.A. Arkharova, K.V. Khaydukov, O.I. Lebedev, A.E. Voloshin, A.N. Generalova, B.N. Chichkov, E.V. Khaydukov. Nano Res., 2021, 14, 1141. doi: 10.1007/s12274-020-3163-4.
- S. Lu, J. Ke, X. Li, D. Tu, X. Chen. Aggregate, 2021, 2, e137. doi: 10.1002/agt2.137.
- X. Zou, M. Xu, W. Yuan, Q. Wang, Y. Shi, W. Feng, F. Li. Chem. Commun., 2016, 52(91), 13389. doi: 10.1039/C6CC07180E.
- A.K. Woźniak, G.F. Schröder, H. Grubmüller, C.A.M. Seidel, F. Oesterhelt. Proc. Natl. Acad. Sci., 2008, 105(47), 18337. doi: 10.1073/pnas.0800977105.
- T. Heyduk. Curr. Opin. Biotechnol., 2002, 13(4), 292. doi: 10.1016/s0958-1669(02)00332-4.
- C. Du, H. Wang, F. Yang, P.C. Hammel. Phys. Rev. B, 2014, 90(14), 140407. doi: 10.1103/PhysRevB.90.140407.
- K.E. Mochalov, A.E. Efimov, A. Bobrovsky, I.I. Agapov, A.A. Chistyakov, V.A. Oleinikov, A. Sukhanova, I. Nabiev. ACS Nano, 2013, 7(10), 8953. doi: 10.1021/nn403448p.
- A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz, R. Felix. Int. J. Hyperth., 2009, 25(7), 499. doi: 10.3109/02656730903287790.
- X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, F. Li. Nat. Commun., 2016, 7, 10437. doi: 10.1038/ncomms10437.
- L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, Z. Liu. Angew. Chemie Int. Ed., 2011, 50(32), 7385. doi: 10.1002/anie.201101447.
- A. Gulzar, J. Xu, D. Yang, L. Xu, F. He, S. Gai, P. Yang. Dalt. Trans., 2018, 47(11), 3931. doi: 10.1039/c7dt04141a.
- J.R. Melamed, R.S. Edelstein, E.S. Day. ACS Nano, 2015, 9(1), 6. doi: 10.1021/acsnano.5b00021.
- J. Wu, T. Liu, Z. Rios, Q. Mei, X. Lin, S. Cao. Trends Pharmacol. Sci., 2017, 38(3), 226. doi: 10.1016/j.tips.2016.11.009.
- D. Lanneau, M. Brunet, E. Frisan, E. Solary, M. Fontenay, C. Garrido. J. Cell. Mol. Med., 2008, 12(3), 743. doi: 10.1111/j.1582-4934.2008.00273.x.
- I.V. Krylov, R.A. Akasov, V.V. Rocheva, N.V. Sholina, D.A. Khochenkov, A.V. Nechaev, N.V. Melnikova, A.A. Dmitriev, A.V. Ivanov, A.N. Generalova, E.V. Khaydukov. Front. Chem., 2020, 8, 895. doi: 10.3389/fchem.2020.00295.
- R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna. IEEE J. Quantum Electron., 1997, 33(7), 1049. doi: 10.1109/3.594865.
- A.A. Kaminskii, N.R. Agamalyan, G.A. Deniseneo, S.E. Sarkisov, P.P. Fedorov. Phys. Stat. Sol. (a), 1982, 70(2), 397. doi: 10.1002/pssa.2210700206.
- L. Esterowitz, F.J. Bartoli, R.E. Allen. J. Lumin., 1979, 21(1), 1. doi: 10.1016/0022-2313(79)90030-9.
- A.A.S. da Gama, G.F. de Sá, P. Porcher, P. Caro. J. Chem. Phys., 1981, 75(6), 2583. doi: 10.1063/1.442410.
Arquivos suplementares
