Детерминистские и случайные аттракторы волновых уравнений со знакопеременной диссипацией
- Авторы: Чанг Ч.1, Ли Д.1, Сун Ч.1, Зелик С.В.1,2,3
-
Учреждения:
- Lanzhou University
- University of Surrey
- Институт прикладной математики им. М.В. Келдыша Российской академии наук
- Выпуск: Том 87, № 1 (2023)
- Страницы: 161-210
- Раздел: Статьи
- URL: https://journal-vniispk.ru/1607-0046/article/view/142252
- DOI: https://doi.org/10.4213/im9250
- ID: 142252
Цитировать
Аннотация
Детально изучена динамика слабо диссипативных волновых уравнений в ограниченных трехмерных областях в случае, когда коэффициент диссипации явно зависит от времени и может менять знак. Показано, что в случае нелинейностей, растущих быстрее чем линейно, рассматриваемые уравнения остаются диссипативными, если некоторое весовое среднее коэффициента диссипации положительно, также продемонстрирована недостаточность подобного рода условий в случае линейных уравнений. Рассмотрены два принципиально различных случая. В первом случае, когда упомянутое выше среднее является равномерным (что соответствует случаю детерминистской диссипации), показано, что рассматриваемая динамическая система обладает гладким равномерным аттрактором, а также неавтономным экспоненциальным аттрактором конечной фрактальной размерности. Во втором случае, когда среднее диссипации не является равномерным (что соответствует случайной диссипации, например, порождаемой схемой Бернулли), построен случайный аттрактор умеренного роста. В отличие от стандартной ситуации, этот аттрактор видимо может иметь бесконечную хаусдорфову и фрактальную размерность. Упрощенный модельный пример, демонстрирующий бесконечномерность случайного аттрактора, также приведен.Библиография: 66 наименований.
Об авторах
Чинчуан Чанг
Lanzhou University
Email: ddli_dan@yeah.net
Дандан Ли
Lanzhou University
Email: ddli_dan@yeah.net
Чунью Сун
Lanzhou University
Email: ddli_dan@yeah.net
PhD, профессор
Сергей Витальевич Зелик
Lanzhou University; University of Surrey; Институт прикладной математики им. М.В. Келдыша Российской академии наук
Автор, ответственный за переписку.
Email: s.zelik@surrey.ac.uk
доктор физико-математических наук, старший научный сотрудник
Список литературы
- L. I. Schiff, “Nonlinear meson theory of nuclear forces. I. Neutral scalar mesons with point-contact repulsion”, Phys. Rev. (2), 84:1 (1951), 1–9
- I. E. Segal, “The global Cauchy problem for a relativistic scalar field with power interaction”, Bull. Soc. Math. France, 91 (1963), 129–135
- J. J. Mazo, A. V. Ustinov, “The sine-Gordon equation in Josephson-junction arrays”, The sine-Gordon model and its applications, Nonlinear Syst. Complex., 10, Springer, Cham, 2014, 155–175
- W. H. Hayt, Engineering electromagnetics, 5th ed., McGraw-Hill, Inc., New York, 1989, 472 pp.
- S. V. Marshall, G. G. Skitek, Electromagnetic concepts and applications, 3rd ed., Prentice-Hall International, Inc., London, 1990, xviii+507 pp.
- A. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Courant Lect. Notes Math., 9, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003, x+234 pp.
- J. Pedlosky, Geophysical fluid dynamics, 2nd ed., Springer-Verlag, Berlin, 1987, xiv+710 pp.
- K. P. Hadeler, “Reaction telegraph equations and random walk systems”, Stochastic and spatial structures of dynamical systems (Amsterdam, 1995), Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45, North-Holland, Amsterdam, 1996, 133–161
- M. G. Grillakis, “Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity”, Ann. of Math. (2), 132:3 (1990), 485–509
- J. Shatah, M. Struwe, “Well-posedness in the energy space for semilinear wave equations with critical growth”, Int. Math. Res. Not. IMRN, 1994:7 (1994), 303–309
- J. Shatah, M. Struwe, “Regularity results for nonlinear wave equations”, Ann. of Math. (2), 138:3 (1993), 503–518
- C. D. Sogge, Lectures on non-linear wave equations, 2nd ed., International Press, Boston, MA, 2008, x+205 pp.
- Ж.-Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972, 587 с.
- А. В. Бабин, М. И. Вишик, Аттракторы эволюционных уравнений, Наука, M., 1989, 296 с.
- R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp.
- V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp.
- S. Zelik, “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2-3 (2004), 351–392
- K. Jörgens, “Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen”, Math. Z., 77 (1961), 295–308
- J. Ginibre, G. Velo, “The global Cauchy problem for the non linear Klein–Gordon equation”, Math. Z., 189:4 (1985), 487–505
- R. S. Strichartz, “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations”, Duke Math. J., 44:3 (1977), 705–714
- M. D. Blair, H. F. Smith, C. D. Sogge, “Strichartz estimates for the wave equation on manifolds with boundary”, Ann. Inst. H. Poincare C Anal. Non Lineaire, 26:5 (2009), 1817–1829
- N. Burq, G. Lebeau, F. Planchon, “Global existence for energy critical waves in 3-D domains”, J. Amer. Math. Soc., 21:3 (2008), 831–845
- N. Burq, F. Planchon, “Global existence for energy critical waves in 3-D domains: Neumann boundary conditions”, Amer. J. Math., 131:6 (2009), 1715–1742
- A. Haraux, “Dissipativity in the sense of Levinson for a class of second-order nonlinear evolution equations”, Nonlinear Anal., 6:11 (1982), 1207–1220
- A. Haraux, “Two remarks on hyperbolic dissipative problems”, Nonlinear partial differential equations and their applications, Collège de France seminar (Paris, 1983–1984), v. 7, Res. Notes in Math., 122, Pitman, Boston, MA, 1985, 161–179
- J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp.
- J. K. Hale, “Stability and gradient dynamical systems”, Rev. Mat. Complut., 17:1 (2004), 7–57
- T. Caraballo, J. A. Langa, F. Rivero, A. N. Carvalho, “A gradient-like nonautonomous evolution process”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20:9 (2010), 2751–2760
- J. Arrieta, A. N. Carvalho, J. K. Hale, “A damped hyerbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5-6 (1992), 841–866
- Dandan Li, Chunyou Sun, Qingquan Chang, “Global attractor for degenerate damped hyperbolic equations”, J. Math. Anal. Appl., 453:1 (2017), 1–19
- E. Feireisl, “Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent”, Proc. Roy. Soc. Edinburgh Sect. A, 125:5 (1995), 1051–1062
- L. Kapitanski, “Minimal compact global attractor for a damped semilinear wave equation”, Comm. Partial Differential Equations, 20:7-8 (1995), 1303–1323
- V. Kalantarov, A. Savostianov, S. Zelik, “Attractors for damped quintic wave equations in bounded domains”, Ann. Henri Poincare, 17:9 (2016), 2555–2584
- А. К. Савостьянов, С. В. Зелик, “Равномерные аттракторы для волнового уравнения с нелинейностью пятой степени и мерой в качестве внешней силы”, УМН, 75:2(452) (2020), 61–132
- C. Bardos, G. Lebeau, J. Rauch, “Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary”, SIAM J. Control Optim., 30:5 (1992), 1024–1065
- N. Burq, R. Joly, “Exponential decay for the damped wave equation in unbounded domains”, Commun. Contemp. Math., 18:6 (2016), 1650012, 27 pp.
- E. Feireisl, E. Zuazua, “Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent”, Comm. Partial Differential Equations, 18:9-10 (1993), 1539–1555
- J. Rauch, M. Taylor, “Exponential decay of solutions to hyperbolic equations in bounded domains”, Indiana Univ. Math. J., 24 (1974), 79–86
- E. Zuazua, “Exponential decay for the semilinear wave equation with locally distributed damping”, Comm. Partial Differential Equations, 15:2 (1990), 205–235
- A. Haraux, P. Martinez, J. Vancostenoble, “Asymptotic stability for intermittently controlled second-order evolution equations”, SIAM J. Control Optim., 43:6 (2005), 2089–2108
- A. Haraux, M. A. Jendoubi, “Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term”, Evol. Equ. Control Theory, 2:3 (2013), 461–470
- P. Martinez, J. Vancostenoble, “Stabilization of the wave equation by on-off and positive-negative feedbacks”, ESAIM Control Optim. Calc. Var., 7 (2002), 335–377
- R. A. Smith, “Asymptotic stability of $x"+a(t)x'+x = 0$”, Quart. J. Math. Oxford (2), 12:1 (1961), 123–126
- A. H. Nayfeh, D. T. Mook, Nonlinear oscillations, Wiley-Interscience [John Wiley & Sons], New York, 1995, 720 pp.
- G. Fragnelli, D. Mugnai, “Stability of solutions for some classes of nonlinear damped wave equations”, SIAM J. Control Optim., 47:5 (2008), 2520–2539
- G. Fragnelli, D. Mugnai, “Stability of solutions for nonlinear wave equations with a positive–negative damping”, Discrete Contin. Dyn. Syst. Ser. S, 4:3 (2011), 615–622
- P. Freitas, “On some eigenvalue problems related to the wave equation with indefinite damping”, J. Differential Equations, 127:1 (1996), 320–335
- R. Joly, “New examples of damped wave equations with gradient-like structure”, Asymptot. Anal., 53:4 (2007), 237–253
- V. Kalantarov, S. Zelik, “A note on a strongly damped wave equation with fast growing nonlinearities”, J. Math. Phys., 56:1 (2015), 011501, 10 pp.
- J. H. E. Cartwright, V. M. Eguiluz, E. Hernandez-Garcia, O. Piro, “Dynamics of elastic excitable media”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9:11 (1999), 2197–2202
- А. Б. Каток, Б. Хасселблат, Введение в современную теорию динамических систем, Факториал, М., 1999, 768 с.
- X. Цикон, Р. Фрeзе, В. Кирш, Б. Саймон, Операторы Шрeдингера с приложениями к квантовой механике и глобальной геометрии, Мир, M., 1990, 408 с.
- W. Magnus, S. Winkler, Hill's equation, Intersci. Tracts Pure Appl. Math., 20, Interscience Publishers John Wiley & Sons, New York–London–Sydney, 1966, viii+127 pp.
- V. Chepyzhov, M. Vishik, “A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations”, Indiana Univ. Math. J., 42:3 (1993), 1057–1076
- P. E. Kloeden, J. A. Langa, “Flattening, squeezing and the existence of random attractors”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2077 (2007), 163–181
- A. N. Carvalho, J. A. Langa, J. C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, Appl. Math. Sci., 182, Springer, New York, 2013, xxxvi+409 pp.
- A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential attractors for dissipative evolution equations, RAM Res. Appl. Math., 37, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994, viii+183 pp.
- A. Miranville, “Exponential attractors for nonautonomous evolution equations”, Appl. Math. Lett., 11:2 (1998), 19–22
- M. Efendiev, S. Zelik, A. Miranville, “Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems”, Proc. Roy. Soc. Edinburgh Sect. A, 135:4 (2005), 703–730
- A. Miranville, S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, Handbook of differential equations: evolutionary equations, v. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, 103–200
- H. Crauel, F. Flandoli, “Attractors for random dynamical systems”, Probab. Theory Related Fields, 100:3 (1994), 365–393
- L. Arnold, Random dynamical systems, Springer Monogr. Math., Springer-Verlag, New York, 1998, xvi+586 pp.
- H. Crauel, F. Flandoli, “Hausdorff dimension of invariant sets for random dynamical systems”, J. Dynam. Differential Equations, 10:3 (1998), 449–474
- A. Debussche, “Hausdorff dimension of a random invariant set”, J. Math. Pures Appl. (9), 77:10 (1998), 967–988
- A. Shirikyan, S. Zelik, “Exponential attractors for random dynamical systems and applications”, Stoch. Partial Differ. Equ. Anal. Comput., 1:2 (2013), 241–281
- J. Aaronson, “On the ergodic theory of non-integrable functions and infinite measure spaces”, Israel J. Math., 27:2 (1977), 163–173
Дополнительные файлы
