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Abstract: We consider Bloch eigenmodes of three linear stability problems: the kinematic dynamo
problem, the hydrodynamic and MHD stability problem for steady space-periodic flows and MHD
states comprised of randomly generated Fourier coefficients and having energy spectra of three types:
exponentially decaying, Kolmogorov with a cut off, or involving a small number of harmonics (“big
eddies”). A Bloch mode is a product of a field of the same periodicity as the perturbed state and
a planar harmonic wave, exp(iq · x). Such a mode is characterized by the ratio of spatial scales which,
for simplicity, we identify with the length |q| < 1 of the Bloch wave vector q. Computations have
revealed that the Bloch modes, whose growth rates are maximum over q, feature the scale ratio that
decreases on increasing the nondimensionalized molecular diffusivity and/or viscosity from 0.03 to
0.3, and the scale separation is high (i.e., |q| is small) only for large molecular diffusivities. Largely
this conclusion holds for all the three stability problems and all the three energy spectra types under
consideration. Thus, in a natural MHD system not affected by strong diffusion, a given scale range
gives rise to perturbations involving only moderately larger spatial scales (i.e., |q| only moderately
small), and the MHD evolution consists of a cascade of processes, each generating a slightly larger
spatial scale; flows or magnetic fields characterized by a high scale separation are not produced. This
cascade is unlikely to be amenable to a linear description. Consequently, our results question the
allegedly high role of the α-effect and eddy diffusivity that are based on spatial scale separation, as
the primary instability or magnetic field generating mechanisms in astrophysical applications. The
Braginskii magnetic α-effect in a weakly non-axisymmetric flow, often used for explanation of the
solar and geodynamo, is advantageous not being upset by a similar deficiency.

Keywords: Kinematic dynamo problem, hydrodynamic linear stability problem, magnetohydro-
dynamic linear stability problem, Bloch mode, magnetic α-effect, AKA-effect, combined magneto-
hydrodynamic α-effect, magnetic eddy diffusivity, eddy viscosity, scale separation, pseudospectral
methods.
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1. Introduction

In order to investigate the physical realizability of the α-effect and eddy diffusivity
based on spatial scale separation, we consider here numerically Bloch eigenmodes in three
linear stability problems: the kinematic dynamo problem, the hydrodynamic and MHD
stability problem for steady space-periodic flows and MHD states. This paper is a direct
continuation of [Chertovskih and Zheligovsky, 2023], where we have reviewed the literature
and considered in detail the philosophy behind our project, the equations describing the
stability problems, and the mathematical results and numerical tools that can be employed
for tackling them (see also [Zheligovsky, 2011]).

The following question is crucial for assessing the feasibility of the action of the
α-effects and eddy diffusivities of various kinds (the magnetic, kinetic and combined
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MHD ones), relying on the spatial scale separation in the natural hydromagnetic dynamos
(foremostly, the astrophysical ones): is a significant scale separation stable and preserved
during the temporal evolution of the dynamo, or is it unsustainable and destroyed by an
inherent instability?

We focus on the small-scale turbulent motion of incompressible fluid and, in the
MHD stability problem, on magnetic field, that are characterized by a certain range of
spatial scales. For the sake of simplicity, the flow velocity and magnetic field are assumed
to be space-periodic (with the periodicity cell T3 = [−π,π]3) and steady. The direct and
inverse energy cascades along the hierarchy of scales are supposed to give rise to a forcing
supporting the steady states. The chosen characteristic scale is used in the definition of
the nondimensionalized values of the diffusivity parameters, giving an opportunity to
consider just limited intervals of their variation. We study multiscale (actually, two-scale)
perturbations of the Bloch type that are products of a vector field of the same periodicity
as the perturbed state and a planar harmonic wave, eiq·x. The large-scale wave vector q is
an arbitrary real-valued three-dimensional constant vector; its length controls the level of
the spatial scale separation. As explained in [Chertovskih and Zheligovsky, 2023], it suffices
for our purposes to seek the dominant (maximum) growth rate in the parallelepiped

Q = {q |0 ≤ q1 ≤ 1/2, − 1/2 ≤ q2 ≤ 1/2, − 1/2 ≤ q3 ≤ 1/2}.

The outer fluid container is supposed to be sufficiently large so that its boundaries do not
affect the processes that we investigate.

Let us recall (see the detailed explanations in [Chertovskih and Zheligovsky, 2023]) that
the stability problems under consideration then reduce to the eigenvalue problems for the
operators

d : b 7→ η∆qb+∇× (V×b) + iq× (V×b)

in the kinematic dynamo problem,

Hq : v 7→ ν∆qv+Pq

(
v× (∇×V) +V× (∇× v) + iV× (q× v)

)
in the hydrodynamic stability problem, and

Mq : (v,b) 7→
(
ν∆qv+Pq

(
v× (∇×V) +V× (∇× v) + iV× (q× v)

+ (∇×b)×B+ i(q×b)×B+ (∇×B)×b
)
,

η∆qb+∇× (v×B+V×b) + iq× (v×B+V×b)
)

in the full MHD stability problem. Here

∆q : f 7→ ∇2f+ 2i(q · ∇)f− |q|2f

is the modified Laplacian, Pq is the projector onto the space of three-dimensional space-
periodic (with the periodicity cell T3 = [−π,π]3) vector fields f such that eiq·xf is a solenoidal
field, V,B the nondimensionalized flow and magnetic field that are subjected to the pertur-
bations, η and ν are the nondimensionalized molecular magnetic diffusivity and viscosity,
respectively. The eigenfunctions (v,b) and (v∗,b∗) associated with the dominant eigenvalues
(having the maximum real part for a given q, ν and η) have been computed employing the
standard pseudospectral techniques by the code [Zheligovsky, 1993].

For reader’s convenience, we now remind the notation introduced in [Chertovskih and
Zheligovsky, 2023]. We denote by γb, γv and γvb the maximum, over the wave vectors q,
growth rates of the generated magnetic field and perturbations in the kinematic dynamo,
hydrodynamic and MHD linear stability problems, respectively. For a small scale ratio
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|q| = ε, the stability eigenmodes and the associated eigenvalues of the respective operator
of linearization can be expanded in power series in this parameter:

v =
∞∑
n=0

vn(x,X)εn, b =
∞∑
n=0

bn(x,X)εn, λ =
∞∑
n=0

λnε
n. (1)

The α-effect becomes a predominant instability mechanism based on scale separation,
if λ0 = 0. The mean eigenfields are then eigenfunctions of the α-effect operator (see
[Chertovskih and Zheligovsky, 2023; Zheligovsky, 2011]); they evolve in the slow O(ε) time
scale. We denote by γb

α , γv
α and γvb

α the maximum slow-time growth rate of perturbations
due to the action of the α-effect. These values are defined as maxq Reλ1; here λ1 is the
coefficient of the leading term in the expansion (1) of the eigenvalue λ for the respective
problem. When the MHD steady state experiencing a perturbation is parity-invariant
(i.e., satisfies V(x) = −V(−x) and B(x) = −B(−x)), then the α-effect disappears (the α-
effect tensor vanishes). When λ0 = λ1 = 0, the predominant instability mechanism based
on scale separation is eddy diffusivity (in particular, eddy viscosity in the context of
the hydrodynamic stability problem), aka the β-effect in the speak of the mean-field
magnetohydrodynamics (see [Krause and Radler, 1980]). The mean stability eigenfield is
then an eigenfunction of the eddy diffusivity operator (see [Chertovskih and Zheligovsky,
2023; Zheligovsky, 2011]). It evolves in the slow O(ε2) time scale, and we denote by γb

e , γv
e

and γvb
e the maximum slow-time growth rate of perturbations due to the action of the eddy

diffusivity. (Here and in the analogous notation for the α-effect case, superscripts refer to
the three respective stability problems.) These values are defined as maxq Reλ2; here λ2 is
the coefficient of the leading term in the series (1) for the eigenvalue λ.

In section 2 we discuss how sample MHD steady states, whose perturbations we
explore, have been generated. As mentioned above, we have carried out computations
of the dominant growth rates of perturbations in the three linear stability problems. For
each problem, we have generated sample steady states featuring different energy spectrum
decay types: a steep exponential decay, the Kolmogorov spectrum with a cut off, and
fields comprised of a small number of harmonics. Furthermore, for each problem and
energy decay type, we made computations for non-symmetric steady states (possessing
the α-effect) and for parity-invariant ones (possessing eddy diffusivity). We have thus
considered 18 in total sample steady states. We discuss the observed behavior in section 3.
Our conclusions are summarized in the last section.

2. Sample MHD steady states

In order to investigate numerically the instability mechanism under consideration,
sample steady solenoidal T3-periodic fields V and B have been synthesized. The following
procedure has been employed to construct generic flows or MHD states featuring the
α-effect:

i) white-noise three-dimensional pseudo-random complex vectors ck are seeded in
the Fourier space on approximately a half of the regular grid (for k1 ≥ 0) of wave
vectors k;

ii) the condition ck = c−k is used to initialize the remaining Fourier coefficients (so
that the resultant field is real) and is imposed on the coefficients for k1 = 0;

iii) the mean part is removed (setting c0 = 0) and the solenoidality condition (orthogo-
nality of the Fourier coefficient to the respective wave vector, ck ·k = 0) is enforced
by removing the gradient part (ck ·k)k/ |k|2;

iv) depending on the desirable energy spectrum of the field, each coefficient ck is
divided by 4|k| (resulting in the exponential energy spectrum decay); ck is divided
by |k|11/6 when all wave numbers satisfy |km| < 32, or it is set to zero otherwise (the
Kolmogorov spectrum with a cut off, see [Frisch, 1995]); or we set ck = 0 whenever
|km| > 2 for at least one wave number (to obtain a field comprised of a relatively
small number of harmonics);
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v) finally, the field is normalized so that its r.m.s. value is equal to 1 (implying that 1/ν
can be regarded as the local Reynolds number and 1/η the local magnetic Reynolds
number).

Such fields can be interpreted as building blocks in the viscous, inertial and large eddy
subranges of spatial scales of turbulent flow or MHD state; we call them type V, I and
E flows, respectively.

Sample parity-invariant fields have been synthesized by the same procedure with
one exception: all the coefficients ck generated and modified at the stages i) and ii) are
imaginary.

3. Analysis of the behavior of the growth rates

We now present an overview of the numerical results obtained for the sample steady
states. Figures 1–9 summarize the results of computations for the hydrodynamic stability
problem, Figures 10–16 for the kinematic dynamo problem and Figures 17–23 for the
MHD stability problem. All Figures 1–23, except for five Figures 3, 5, 8, 11 and 17, display
in four panels how the results for individual sample steady states depend on the quantities
parameterizing the linear stability problems (the horizontal axis is the molecular viscosity
ν for the hydrodynamic stability problem, the molecular magnetic diffusivity η for the
kinematic dynamo problem, or ν = η for the MHD linear stability problem). Panels (a) show
graphs of the maximum (over the wave vectors q of the planar harmonic wave) growth rates,
panels (b) the components and lengths of q for which the growth rates take these maximum
values. Figures 1–4, 10–13 and 17–20 report numerical results for the generic sample
states giving rise to the AKA-effect, magnetic and combined MHD α-effect, respectively.
Panels (c) in these figures (except Figures 3, 11 and 17) show plots of the maximum (over
the direction l of the wave vectors q = εl) slow-time growth rate due to the action of the
α-effect in the limit of infinitesimal spatial scale ratio ε→ 0 (see section 5.1 of Chertovskih

(a) (b)

(c) (d)
Figure 1. Maximum growth rates of the Bloch hydrodynamic linear stability modes (a) and
maximum slow-time growth rates due to the action of the AKA-effect (c) for a sample
non-parity-invariant steady flow of type V. Wave vectors q (b), for which the growth rates are shown
in (a), and directions of the wave vectors (d), for which the growth rates are shown in (c).
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(a) (b)

(c) (d)
Figure 2. Same as in Figure 1, but for a sample non-parity-invariant flow of type I.

(a) (b) (c)

Figure 3. For ν = 0.1, isolines of the dominant growth rates γv(q) of the Bloch hydrodynamic stability modes in the cross-section
q1 = 0.32 of the parallelepiped Q (a), isosurfaces of the growth rates (b) and the dominant growth rates as a function of q2 on the line
q1 = 0.48, q3 = 0.3 (c) for a sample non-parity-invariant flow of type E. The isolines are drawn for the growth rates that are integer
multiples of 0.011 (the minimum and maximum γv in this plane are 0.0128 and 0.0950). The width of the isolines and dash length
increase with the constant values along the curves. The isosurfaces are shown in Q at the levels of 75%, 80%, 90% and 95% of the
maximum over Q value γv(q) = 0.0951 for q = (0.3110,0.4967,0.2967). The axis q1 points inside Q, the q2 axis to the left, and the q3
axis is vertical.

and Zheligovsky [2023]), i.e., the maximum real part of the leading term coefficient λ1 in the
expansion (1) of the growth rate λ in power series in ε. The remaining Figures 5–9, 14–16
and 21–23 present plots for the parity-invariant sample states lacking the α-effect, but
giving rise to eddy viscosity, magnetic and combined MHD eddy diffusivity, respectively.
Panels (c) in these figures (except Figures 5 and 8) show plots of the maximum (over the
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directions l of the wave vectors q = εl) slow-time growth rate due to the action of the
respective large-scale eddy diffusivity in the limit ε→ 0, i.e., the maximum real part of the
leading term coefficient λ2 in the expansion (1) of λ. In all figures, panels (d) present the
components of the unit vector l for which the growth rate shown in (c) is maximum. Bold
dots in the graphs show the actually computed values. Finally, Figures 3, 5, 8, 11 and 17
illustrate the dependence of the dominant growth rate of the Bloch linear stability modes
on the wave vector q, e.g., show isosurfaces of λ in the wave vector domain Q.

(a) (b)

(c) (d)
Figure 4. Same as in Figure 1, but for the sample non-parity-invariant flow of type E.

The globally maximum growth rates of linear perturbation modes have been computed
in the ranges 0.03 ≤ ν,η ≤ 0.3. The maxima depend continuously on ν or η, and the
associated stability modes constitute branches. In a branch, the dependencies of the
modes and their growth rates on the parameter are smooth, as well as the dependence
of the wave vector q, for which the growth rate is maximum. We call “the interval of
dominance of a branch” the interval of parameter values, where the growth rates of modes
constituting the branch are globally maximum. In the plots of maximum growth rates
and the respective q (panels (a) and (b) in Figures 1–23 except Figures 3, 5, 8, 11, 17),
intervals of dominance of individual branches are delimited by thin vertical lines and the
branches are numbered by Roman numerals. (The left boundary, ν = 0.03 or η = 0.03,
is shown by a thin dashed vertical line.) The molecular diffusivity range, for which we
perform computations, splits in different problems into 2 to 6 intervals of dominance of
distinct branches. Often branches can be extended outside their intervals of dominance by
performing continuation in parameter; the modes, constituting extensions of the branches,
still have locally maximum growth rates, which cease, however, to be global maxima. The
growth rates of modes constituting extensions of the branches outside their intervals of
dominance are shown in light gray in the plots in panels (a). We have checked that all such
continuations involve local maxima by computing the Hessian of the growth rates. We have
not intended to extend all branches, or to extend them on the largest possible diffusivity
intervals.
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(a) (b)

Figure 5. For ν = 0.1, dominant growth rates γv(q) of the Bloch hydrodynamic stability modes as a
function of q2 on the line q1 = 0.44, q3 = 0.16 (a), and isosurfaces of the growth rates in Q at the levels
of 70%, 80% and 90% of the maximum over Q value γv(q) = 0.1283 for q = (0.4615,0.3878,0.0175)
(b) for a sample parity-invariant steady flow of type V. The axis q1 points towards the reader, the
frontal vertical plane is q1 = 1/2, the q2 axis points to the right, and the q3 axis is vertical.

(a) (b)

(c) (d)
Figure 6. Panels (a), (b) and (d) same as in Figure 1a, 1b and 1d, but for the sample parity-invariant
steady flow of type V, and maximum slow-time growth rates due to the action of the eddy viscosity
Figure 1c. In intervals I and IV, the growth rates γv(q) are globally maximum over Q for
q = (0,−1/2,1/2) and (1/2,−1/2,0), respectively.

In panels (b) of all Figures except Figures 3, 5, 8, 11, 17, red, green and blue lines show
the components q1, q2 and q3, and black dashed lines show |q|. (In order to demonstrate
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(a) (b)

(c) (d)
Figure 7. Same as Figure 6, but for a sample parity-invariant steady flow of type I. In interval IV, the
globally maximum over Q growth rate is γv(q) = 0 for q = 0.

that in each branch every qi is a smooth function of the parameter ν or η, the selection
criterion q ∈Q may be not enforced for a part of a graph of qi .) Obviously, this color coding
does not work, when all the three components are equal on an interval of the diffusive
parameter; this does happen when the growth rates are globally maximum for half-integer
wave vectors. The equal qi ’s are then shown in panel (b) by a wide light gray line. We

(a) (b)

Figure 8. For ν = 0.1, dominant growth rates γv(q) of the Bloch hydrodynamic stability modes as
a function of q2 on the line q1 = 0.34, q3 = −0.36 (a), isosurfaces of the growth rates at the levels of
60%, 70%, 80% and 90% of the maximum over Q growth rate γv(q) = 0.1356 for q = (1/2,−1/2,0) (b)
for a sample parity-invariant steady flow of type E. The axis q1 points towards the reader, the frontal
vertical plane is q1 = 1/2, the q2 axis points to the right, and the q3 axis is vertical.
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(a) (b)

(c) (d)
Figure 9. Same as Figure 6, but for the sample parity-invariant steady flow of type E. The growth
rates in interval I are globally maximum over Q for q = (1/2,−1/2,0), and γv(q) = 0 for q = 0 is
globally maximum in interval IV.

(a) (b)

(c) (d)
Figure 10. Maximum growth rates of the Bloch magnetic modes (a) and maximum slow-time growth
rates due to the action of the magnetic α-effect (c) for a sample non-parity-invariant steady flow of
type V. Wave vectors q (b), for which the growth rates are shown in (a), and directions of the wave
vectors (d), for which the growth rates are shown in (c).
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Figure 11. For η = 0.1, isosurfaces of the dominant growth rates γb(q) at the levels 0 and a half of the
maximum over Q growth rate (the internal darker structures) for a sample non-parity-invariant steady
flow of type I. The maximum over Q value γb(q) = 0.0097 is located at q = (0.3333,−0.1805,0.1742).
The axis q1 points inside Q, the q2 axis to the left, and the q3 axis is vertical.

(a) (b)

(c) (d)
Figure 12. Same as Figure 10, but for the sample non-parity-invariant steady flow of type I.
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(a) (b)

(c) (d)

(e)
Figure 13. Panels (a)–(d) same as (a)–(d) in Figure 10, but for a sample non-parity-invariant steady
flow of type E. In interval I, the growth rates are globally maximum over Q for q = (0,−1/2,0).
Eigenvalues of the symmetrized α-effect tensor (e). The insert in (c): a zoom of the plot (c) near the
point of singular behavior of γb

α . The cusp is located at η (shown by the right thin vertical line in (c)
and (e)), for which the intermediate eigenvalue of the symmetrized α-effect tensor vanishes.

encounter the instance of q1 = q2 = q3 = 1/2 in the kinematic dynamo problem for a sample
parity-invariant flow of type E (Figure 16), but usually such case is q = 0. In this connection
we recall that there always exist neutral (i.e., such that λ(q) = 0) perturbation modes for
q = 0; they have globally maximum growth rates for sufficiently large ν or η (see also
a discussion at the end of section 5 of [Chertovskih and Zheligovsky, 2023]).

The plots in panels (b) reveal, that typically the wave vectors q, for which the growth
rates are globally maximum, suffer discontinuity at the boundaries of the intervals of
dominance, i.e., the branches are independent. A notable exception, encountered when
computing perturbation modes of parity-invariant flows or MHD states, is branches bifur-
cating from branches of Bloch modes for half-integer wave vectors q (see, e.g., Figures 6, 9,
14, 15, 21 and 22). A formal asymptotic expansion of the offshoots stemming from a branch
for q = 0 in the kinematic dynamo problem will be constructed in the next paper of this
series. Continuing a branch outside its interval of dominance is not always possible, e.g.,
continuation of branches I into regions II fails in the dynamo problem for the sample flows
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(a) (b)

(c) (d)
Figure 14. Panels (a), (b) and (d) same as in Figure 10a, 10b and 10d, but for a sample
parity-invariant steady flow of type V, and maximum slow-time growth rates due to the action of the
magnetic eddy diffusivity Figure 10c. In interval III, the growth rate γb(q) = 0 for q = 0 is globally
maximum over Q.

(a) (b)

(c) (d)
Figure 15. Same as in Figure 14, but for a sample parity-invariant steady flow of type I. In interval I,
the growth rates are globally maximum over Q for q = (1/2,−1/2,0), and γb(q) = 0 for q = 0 is
globally maximum in interval III.

Russ. J. Earth. Sci. 2023, 23, ES4004, https://doi.org/10.2205/2023es000838 12 of 20

https://doi.org/10.2205/2023es000838


Linear perturbations of the Bloch type. . . II. Numerical Results Chertovskih and Zheligovsky

(a) (b)

(c) (d)
Figure 16. Same as in Figure 14, but for a sample parity-invariant steady flow of type E. In intervals
I and II, the growth rates are globally maximum over Q for q = (1/2,1/2,1/2) and q = 0, respectively.

of types V and E possessing the magnetic α-effect (Figures 10 and 13), because in regions
II continuations of the branches I do not consist of locally maximum growth rates (the
Hessians of the growth rates are not sign-defined). This suggests that for the two samples
the branches II bifurcate from branches I and have the asymptotics similar to the one for
offshoots bifurcating from branches for q = 0.

Figures 3, 5, 8, 11 and 17 display isosurfaces of the dominant growth rate (i.e.,
the largest real part of all eigenvalues of the stability operator) in the domain Q. To
construct the isosurfaces, we have computed the dominant growth rates on uniform meshes
comprised of 25× 50× 50 mesh points for Figures 3, 5, 8, or 20× 40× 40 mesh points for
Figures 11 and 17. The presence of at least 4 local maxima is observed in Figure 3b, 6 in
Figure 5b, just 1 in Figure 8b, 2 in Figure 11 and 4 in Figure 17b. The complexity of the
dependence of the dominant growth rate on the wave vector q is also illustrated by the
plot of its isolines in a cross-section of Q in Figure 3a. Graphs reveal 3 regions of smooth
behavior of the dominant growth rate on varying q2 along the line q1 = 0.48, q3 = 0.3
(Figure 3a), 4 regions along the line q1 = 0.44, q3 = 0.16 (Figure 5a), 4 regions along the
line q1 = 0.34, q3 = −0.36 (Figure 8a) and 3 regions along the line q1 = 0.2, q3 = −0.15
(Figure 17a). The presence of several local maxima in Q and the loss of smoothness on the
boundaries between branches of dominant stability modes implies that solving the system
of equations ∂γ/∂qm = 0 is not an optimal numerical strategy for finding the globally (in
the domain Q) maximum growth rate.

Like the growth rates of the Bloch modes, the maximum slow-time growth rates due to
the action of the α-effect or eddy diffusivity depend continuously on ν or η and constitute
branches, in which the dependencies of the growth rate and the direction l of the wave
vector q = εl, for which the growth rate is maximum, on the molecular diffusivity parameter
are smooth. We assign the name “the interval of dominance of a branch” to the interval,
where the growth rates of modes constituting the branch are globally maximum. In plots
of maximum slow-time growth rates (panels (c) and (d) in Figures 1–23 except Figures
3, 5, 8, 11, 17), intervals of dominance of individual branches are demarcated by thin
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(a) (b)

Figure 17. For ν = η = 0.1, dominant growth rates γvb(q) of the Bloch MHD stability modes as
a function of q2 on the line q1 = 0.2, q3 = −0.15 (a) and isosurfaces of the growth rates for a sample
non-parity-invariant MHD steady state of type V shown in Q at the levels of 75%, 80%, 90% and
95% of the maximum over Q value γvb(q) = 0.1762 (b) for q = (0.4888,0.2536,−0.2075). The axis q1
points towards the reader, the frontal vertical plane is q1 = 1/2, the q2 axis points to the right, and
the q3 axis is vertical.

(a) (b)

(c) (d)
Figure 18. Maximum growth rates of the Bloch MHD linear stability modes (a) and maximum
slow-time growth rates due to the action of the combined MHD α-effect (c) for the sample
non-parity-invariant MHD steady state of type V, for ν = η. Wave vectors q (b), for which the growth
rates are shown in (a), and directions of the wave vectors (d), for which the growth rates are shown in
(c). Slow-time growth rates of large-scale MHD stability modes constituting branch 2 are globally
maximum in two disjoint intervals of ν = η; in the intervening interval of dominance of branch 3,
branch 2 and the respective components of the wave vectors q are shown by dashed lines in (c), (d).

Russ. J. Earth. Sci. 2023, 23, ES4004, https://doi.org/10.2205/2023es000838 14 of 20

https://doi.org/10.2205/2023es000838


Linear perturbations of the Bloch type. . . II. Numerical Results Chertovskih and Zheligovsky

(a) (b)

(c) (d)
Figure 19. Same as in Figure 18, but for a sample MHD non-parity-invariant state of type I. In
interval II, the growth rates are globally maximum over Q for q = (1/2,0,1/2).

(a) (b)

(c) (d)
Figure 20. Same as in Figure 18, but for a sample non-parity-invariant MHD state of type E.
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(a) (b)

(c) (d)
Figure 21. Panels (a), (b) and (d) same as in Figure 18a, 18b and 18d, but for a sample
parity-invariant steady MHD state of type V, and maximum slow-time growth rates due to the action
of the magnetic eddy diffusivity Figure 18c. In interval III, the growth rates are globally maximum
over Q for q = (0,0,−1/2). Growth rates of the Bloch MHD stability modes constituting branch I are
globally maximum in two disjoint intervals of ν = η (a), (b).

vertical lines and numbered by arabic numbers. The number of the detected independent
intervals of dominance of branches of slow-time growth rates due to the action of the
α-effects (eddy diffusivities) varies in our computations for different problems from 1 to
4 (from 1 to 3, respectively). Like in the case of branches of growth rates of the Bloch
instability modes, branches can often be extended outside their intervals of dominance into
branches of local, but not global maximum slow-time growth rates. We have not performed
such continuations (with the exception of Figure 18). In panels (d), red, green and blue
lines show the components li of the unit vector l in the direction of the wave vector q for
which the slow-time growth rate is maximum.

Computations of large-scale MHD stability modes for the sample MHD steady state of
type V have revealed an unusual phenomenon: Slow-time growth rates of large-scale MHD
stability modes due to the action of the combined MHD α-effect, constituting branch 2,
are globally maximum in two disjoint intervals of ν = η (in the intervening interval of
dominance of branch 3, branch 2 and the respective components of the wave vectors q
are shown by dashed lines in Figure 18c, 18d). Similarly, for the sample parity-invariant
MHD states of types V and E, growth rates of the Bloch MHD stability modes constituting
branch I (III, respectively) turn out to be globally maximum in two disjoint intervals
of ν = η (Figures 21a, 21b and 23a, 23b). The branch III in Figure 23a, 23b is also notable
in that it both begins and ends in bifurcations of two branches for q = 0 (the globally
maximum growth rate is γvb(q) = 0 in the left, and the short-scale eigenmodes are unique
and have strictly positive growth rates in the right).

The horizontal axes in panels (c) and (d), showing maximum slow-time growth rates
due to the action of the α-effect or eddy diffusivity, are typically chopped off in the left and
do not span the complete intervals 0.03 ≤ ν,η ≤ 0.3, for which we have done computations.
The reason is that the slow-time growth rates have vertical asymptotes at the critical values
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(a) (b)

(c) (d)
Figure 22. Same as in Figure 21, but for a sample parity-invariant steady MHD state of type I.
In intervals I and III, the growth rates are globally maximum over Q for q = (−1/2,0,0) and
q = (0,0,1/2), respectively, and in interval IV γvb(q) = 0 for q = 0 is globally maximum.

(a) (b)

(c) (d)
Figure 23. Same as in Figure 21, but for a sample parity-invariant MHD state of type E. In interval I,
the growth rates are globally maximum over Q for q = (0,0,1/2), and in intervals II and V for q = 0
(γvb(q) = 0 in interval V).
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of the diffusivity parameters ν or η, at which the monotonic small-scale instability sets in
(the hydrodynamic or MHD instability, or the dynamo action, depending on the problem
at hand), i.e., at which the eigenvalue associated with the dominant small-scale (for q = 0)
zero-mean mode of the linearization vanishes (on decreasing from the parameter values for
which the flow or MHD state is stable). This phenomenon does not occur for the oscillatory
loss of stability, when the respective eigenvalue is imaginary. It was described in Zheligovsky
[2011] for the eddy diffusivity and discovered in Rasskazov et al. [2018] for the magnetic
α-effect; the same arguments explain a similar asymptotics for the AKA and combined
MHD α-effects. The vertical asymptotes for the slow-time instability growth rates due to
the action of the α-effects or eddy diffusivities are shown in panels (c) and (d) by the left
thin vertical lines, located at the critical points of the onset of the short-scale instability.

As discussed in section 5.1 of [Chertovskih and Zheligovsky, 2023], the kinematic
dynamo problem is specific in that the maximum slow-time growth rate γb

α due to the action
of the magnetic α-effect is determined in terms of the eigenvalues αi of the symmetrized
magnetic α-effect tensor sAbb = (Abb + (Abb)∗)/2:

γb
α ≡max

θ,ϕ
Reλb

1(θ,ϕ) =
√

max(α1α2, α2α3, α1α3)

(see [Rasskazov et al., 2018]). This implies that γb
α = 0 only for such molecular diffusivity η∗,

that the intermediate in value eigenvalue of sAbb vanishes (generically the three eigenvalues
are distinct), and then γb

α = O(|η − η∗|1/2). We encounter this phenomenon for a non-parity-
invariant sample flow of type E (see Figure 13). The insert in panel (c) shows a zoom of
the plot of γb

α near the point η∗ at which α2 = 0 (see Figure 13e); it has the form of a cusp
agreeing with the asymptotics γb

α = O(|η − η∗|1/2).

4. Conclusions

We have addressed the following question: Suppose a flow or an MHD state charac-
terized by a significant separation of scales has emerged. Will the scale separation persist
during the subsequent evolution of the flow and magnetic field? As it turns out, the answer
is negative: it is likely to be destroyed by the instability to perturbations of the spatial scale
that is slightly larger than that of the flow or MHD state experiencing a perturbation.

In agreement with [Zheligovsky and Chertovskih, 2020], our numerical results demon-
strate that, at least in the limited interval of the molecular diffusivity parameters values for
which we have performed computations of the Bloch eigenmodes, the three linear stability
problems under consideration: the kinematic dynamo problem, the hydrodynamic and
MHD stability problems – show a remarkably similar behavior, irrespective of the energy
spectrum of the steady flow and magnetic field (V,B) subjected to perturbation. For generic
steady flows and MHD states, the Bloch modes, that have the maximum over q growth
rates, feature spatial scale separation that enhances on increasing the diffusivity ν and/or η.
The length of the wave vector q, for which the growth rate is maximum, is between 0.36
(Figure 1) and 0.71 (Figure 2) for the smallest considered ν,η = 0.03, and it decreases to
the values between 0.01 (Figure 2) and 0.32 (Figure 18) for the largest considered ν,η = 0.3.
(We recall that a small positive |q|manifests high scale separation, but no scale separation
is present for q = 0.) Most instability modes for parity-invariant steady flows or MHD
states also share this property: the length of q maximizing the growth rate is in the range
between 0.43 (Figure 7) and

√
3/4 (Figure 16) for ν,η = 0.03, and it decreases to the values

between 0 (e.g., Figures 14–16) and 0.20 (Figure 6) for ν,η = 0.3.
A physical explanation is straightforward: the larger the diffusivities, the more sta-

bilizing the effect of diffusion is at a given spatial scale relative the destabilizing effect of
advection (since diffusion, described by a second-order partial differential operator, com-
petes with advection, described by a first-order operator); therefore, for a higher diffusivity,
instability is more efficient at larger space scales. However, instability due to the α-effects
(growth rates order the scale ratio, when it is small) or eddy diffusivity/viscosity (growth
rates order the scale ratio squared), emerging at a high scale separation, remain “invisible”,
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being overshadowed by a faster (growth rates order unity) growing instability modes
featuring a modest scale separation. Of course, this argument is only heuristic; in fact, the
opposite occurs for one non-parity-invariant (|q| grows from 0.65 for ν = η = 0.03 to

√
1/2

for ν = η = 0.3, Figure 19) and one parity-invariant (|q| grows from 0.45 for ν = η = 0.03 to
1/2 for ν = η = 0.3, Figure 21) MHD state. Also, it does not explain why the growth rates
have maxima inside intervals of dominance, e.g., I in Figures 1, 2, 4 for non-parity-invariant
flows, or III in Figures 7 and 9, and II in Figure 22 for parity-invariant steady states.

The details of the behavior may differ: the overall decrease of growth rates on increas-
ing the diffusivity parameter can be monotonic or non-monotonic, their maxima over wave
vectors of the Bloch amplitude modulation can be continuous or discontinuous, and the
intervals of their continuity can split into several intervals of smooth dependence. The
behavior of the maximum growth rates as functions of the diffusivity parameters appears
completely independent of the behavior of the slow-time growth rates due to the action of
an α-effect or eddy diffusivity/viscosity; this can be expected, since the two growth rates
are determined as solutions to algebraically different problems.

Magnetic α-effect is at present widely used for explaining the origin of astrophysical
magnetic fields, in particular, of the solar and geomagnetic fields. Eddy (“turbulent”) diffu-
sivity is also theoretically important: it is believed that it is responsible for the similarity of
many numerical geodynamo models despite the rheological parameter values used were
by orders of magnitude more computationally favorable than those characterizing the
conditions of the Earth’s outer core (see, e.g., [Starchenko, 2017]). Our results suggest that
the α-effect and eddy diffusivity that are based on spatial scale separation are not reliable
dynamo mechanisms in this context. Any given scale range, sufficiently small compared
to the size of the fluid container, gives rise to perturbations involving somewhat larger,
but not significantly larger spatial scales. Thus, the full evolution consists of a cascade of
instabilities each generating a not-very-much-larger scale. It creates flows and magnetic
fields that lack high scale separation and occupy all available spatial scale slots; if at
a certain time a significant separation of spatial scales emerges, the cascade destroys it. It
is doubtful that such a highly nonlinear cascade can be described by a differential operator
of a simple structure, such as the operators of the α-effect or eddy diffusivity.

The expected cascade of instabilities giving rise to additional spatial frequencies is
reminiscent of the L. D. Landau scenario of development of turbulence [Landau and Lifshitz,
1987], in which flow gradually becomes more and more complex as a result of appearance,
in a sequence of bifurcations, of temporal frequencies that are incommensurable with
those already present in the flow. However, there exists a profound difference between the
theories of the α-effect and hydrodynamic turbulence. Although the laws of hydrodynamic
turbulence have not been derived from the first principles without additional assumptions
originating in physics, they have a firm foundation in the vast body of data accumulated
in experiments, for instance, in wind tunnels. By contrast, to the best of our knowledge,
just a single experiment [Steenbeck et al., 1968] was conducted to detect the emergence
of the magnetic α-effect. Thus, the familiar mathematical expression for the α-effect has
been rigorously derived only for the case of asymptotically high scale separation (see
the discussion and references in [Chertovskih and Zheligovsky, 2023]), and it is desirable
to establish the general laws describing the influence of small-scale magnetic and fluid
structures on large-scale ones. A similar problem of quantifying the influence of the
subgrid-scale structures on the evolution of the larger-scale structures arises in the context
of the Large Eddy Simulation (LES) numerical methods.

Other mechanisms for formation of the α-effect have been considered in the literature,
e.g., the α-effect in an almost axisymmetric fluid flow, or in turbulence, whose origin
is of a statistical nature and results from ensemble averaging. The magnetic α-effect
of [Braginsky, 1964a,b] in a weakly non-axisymmetric flow is advantageous in that it
is not affected by the mechanism that erodes the α-effect relying on high spatial scale
separation: Existence of the Braginskii α-effect was demonstrated in cylindrical coordinates
by averaging in the azimuthal variable φ. By analogy with the scale separation in Cartesian
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variables investigated here, it is algebraically possible to consider “Bloch modes” of the
form eßqφb(x), but they are geometrically inconsistent unless q is integer. It remains to be
investigated how our results and conclusions are modified when the underlying flows and
steady states are non-periodic.

Finally, let us note that the inefficiency of the magnetic α-effect relying on scale
separation in Cartesian variables examined here appears to abate the importance of the
phenomenon of α-quenching [Vainshtein and Cattaneo, 1992].
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