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Abstract: Most Peat Hydrological Units (PHU) in South Sumatra, Indonesia, have been threatened
by degradation from climate changes, human activities, and environmental factors. This study
mapped land cover using Random Forest Classification and identified forest degradation using NDFI
(Normalized Difference Forest Index) change analysis in several PHUs of the South Sumatra peatland
from 2015 to 2023. We combined Sentinel-1, Sentinel-2, and Landsat-8 data for the land cover
classification. Meanwhile, we utilized Landsat-8 to identify forest degradation. Our findings indicate
that tree cover significantly decreased in 2015, 2019, and 2023, coinciding with severe drought
conditions driven by El Nino events. A significant decrease in forest cover in 2019 was suggested by
low tree cover, up to 47.1% of the total area of 1.054 million ha. Therefore, grassland and bare/sparse
vegetation had more significant coverage percentages, reaching 22.89% and 11.40%, respectively, in
2019. Deforestation varied but generally decreased from 2015 to 2023, according to the analysis of
NDFI changes. Vegetation regrowth increased notably from 2016 to 2020 and remained relatively
stable afterward. In addition, forest disturbance decreased from 2015 to 2020 but slightly increased
in the last few years. Although two PHUs have encountered more severe degradation, their peatland
ecosystems included inside them have distinct characteristics. Specifically, the PHU of Sungai Saleh —
Sungai Sugihan encompasses cultivated areas, whereas the PHU of Sungai Sugihan — Sungai Lumpur
comprises protected areas. These findings highlight the need for restoration and sustainable land
management to prevent further degradation.

Keywords: Peatland, Land cover, Degradation, Random Forest, NDFI, South Sumatra, Remote
Sensing.
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1. Introduction

Hydrologically and ecologically different peat forest habitats regulate the global
carbon cycle, biodiversity, and climate [Page et al., 2011]. Peat forest degradation and land
cover changes due to drainage, deforestation, and land conversion pose unprecedented
risks to these vital ecosystems [Hooijer et al., 2010; Vijay et al., 2016]. Peatlands are carbon
sinks that help mitigate climate change [Page ef al., 2011]. Due to soil oxidation and
degradation, peat forests emit greenhouse gases when drained and deforested [Hooijer et al.,
2010; Khakim et al., 2020].

There are direct and indirect drivers of peatland deforestation and degradation in the
study area. Logging, industrial plantations, artificial drainage canals, recurrent fires, and
fire-based traditional farming practices are direct contributors. Indirect factors include
climate change, land use policy inconsistency, and inadequate management [Dolong et al.,
2017]. The logging and industrial plantations driving the degradation by agricultural
conversion are mainly for palm oil and acacia plantations [Astuti, 2021; Cooper et al., 2020;
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Miettinen et al., 2012; Nurhayati et al., 2021]. Industrial plantations and small holder
areas occupy a minimum of 21% of the peatland in South Sumatra [Putra et al., 2019].
In addition, the usage of uncontrolled fire has progressively increased over time in relation
to the traditional cultivation of sonor or swamp rice [Chokkalingam et al., 2006]. Land
clearance removes woody and non-woody plants for agricultural or industrial use. Logging
roads make interior forests simpler to access and move, worsening deforestation. Artificial
drainage systems lower the groundwater table for crop cultivation and timber transport.
However, drainage systems disrupt the hydrological equilibrium, increasing surface runoff
and decreasing water storage capacity. Consequently, the draining of peatlands can alter
hydrology and ecosystem processes.

Furthermore, drainage for agricultural and plantation development increases peat
soil subsidence and fire risk [Khakim et al., 2020]. The subsidence rate of peatlands in
South Sumatra increased by 6.4 times after the 2015 El Nifo event [Khakim et al., 2020]. In
addition, the rate ranged from —567 to 347 mm/year between 2019 and 2022 [Zheng et al.,
2023]. Higher temperatures, less precipitation, and more peat evaporation in droughts
reduce peatland groundwater tables. Drawdown accelerates peat oxidation and breakdown,
causing subsidence and carbon emissions. Peat fires are a significant issue in Indonesia,
notably in South Sumatra. Dry drainage makes peatlands more combustible [Khakim et al.,
2022]. Air pollution and climate change can result from peat fires releasing substantial
volumes of carbon dioxide and other pollutants [Cobb et al., 2017; Dommain et al., 2014;
Page et al., 2011].

Sustainable management and peatland degradation have been addressed. Strategies
include avoiding peatland conversion, encouraging rewetting and regenerating degraded
peatlands, and restricting burning [Dohong, 2017; Harrison et al., 2019; Uda et al., 2020;
Yuwati et al., 2021]. Due to their environmental and climate implications, peatland con-
servation and management in Indonesia, including South Sumatra, have garnered inter-
national attention. Initiatives like the Indonesian Peatland Restoration Agency (BRG)
have been established to coordinate restoration efforts [Humas, 2016]. Information on
peatland degradation is essential for designing effective policies and regulations that pro-
mote sustainable land use practices, prevent further degradation, and support restoration
efforts. Understanding and addressing peatland degradation in South Sumatra is crucial for
mitigating climate change, preserving biodiversity, regulating water resources, preventing
fires, promoting sustainable agriculture, supporting local communities, meeting interna-
tional commitments, and maintaining the ecosystem’s overall health. The urgent need to
understand the drivers and consequences of such changes underscores the importance
of advanced remote sensing technologies, which offer invaluable insights for effective
conservation strategies [Miettinen et al., 2017].

Ecological, hydrological, and environmental indices are used to estimate peatland
deterioration. Peatland degradation is quantified and monitored in several ways. Satellite
imaging (Landsat, Sentinel) can track land cover, vegetation health, and water levels. Using
Landsat-8, Sentinel-1, and Sentinel-2 satellite data to analyze peat forest degradation
and land cover changes is challenging. Landsat-8’s multispectral capabilities allow it to
identify deforested areas, agricultural growth, and vegetation health changes [Pettorelli et al.,
2014]. Sentinel-1 SAR technology provides all-weather imaging and reliable water table
monitoring, which is crucial for peatland health assessment [Asmufet al., 2019; Khakim
et al., 2022; Toca et al., 2023]. The spectral richness and high geographical resolution of
Sentinel-2 data improve peat forest ecosystem study. Its regular return intervals allow
monitoring of land cover changes, revealing subtle changes in vegetation composition
and structure [Carrasco et al., 2019; Poortinga et al., 2019; Urban et al., 2018]. Advanced
analytical methods are needed to obtain comprehensive information from these databases.

Unsupervised and supervised classification analyze land cover. Automatic, data-
driven unsupervised classification is ideal for land cover pattern research, especially
in areas with little prior knowledge. However, unsupervised classification has lower
accuracy and subjectivity in interpretation. In addition, unsupervised methods can produce
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numerous classes that might not have precise ecological or practical meanings, making
interpretation difficult. On the contrary, supervised classification allows us to differentiate
between them accurately based on your training samples. On the other hand, random
forest classification enables the automated identification and classification of land cover
types based on the spectral signatures of different land features, contributing to precise
mapping and monitoring [Gdmez et al., 2016; Malinowski et al., 2020; Shih et al., 2021;
Tian et al., 2016]. It allows for identifying and monitoring degradation-related changes
in land cover proportions. Landsat endmembers were successfully applied to derive
a Normalized Difference Fraction Index (NDFI) for monitoring forest degradation in
several environmental, such as Amazon forest [Souza Jr. et al., 2013], non-Amazonian
tropical forest [Schultz et al., 2016], and tropical peatland [Numata et al., 2022]

Spectral analysis examines peatland surface reflectance in different bands. Spectral
signatures can reveal vegetation, water, and soil changes. Changes in vegetation com-
position, density, and health indicate peatland degradation. Monitoring monoculture
plantations vs. diversified native vegetation can indicate a decline. Land cover changes
caused by peatland forest degradation can have serious ecological, environmental, and
socioeconomic consequences. Spectral Mixture Analysis (SMA) is a typical remote sensing
approach for assessing land cover component proportions in mixed pixels. Assessing peat-
land deterioration is another use for it. SMA and machine learning algorithms like random
forest classification are used for classifying complicated ecosystems like peat forests. SMA
uses remote sensing data to assess the fractional cover of vegetation, soil, and water [Adams,
1995; Sakti and Tsuyuki, 2015].

This study employed a supervised random forest (RF) classification method to gain
insight into the various types and spatial distribution of land cover. Furthurmore, the
SMA and NDFI were utilized to identify peatland vegetation degradation in the South
Sumatra peatland. The relationship between peatland forest degradation and land cover
refers to how changes in the condition and quality of peatland ecosystems affect the types
and distribution of vegetation and other land cover components within those ecosystems.

2. Materials and Methods
2.1. Study area

The study area is peatland, situated on the eastern coast of the island of Sumatra,
adjacent to the Musi River delta (Figure 1). The study area is in two Bayuasin and Ogan
Ilir Regencies and consists of nine peat hydrological units (PHUs). In 2015, the South
Sumatra region experienced a catastrophic event when the El Nifio phenomenon triggered
devastating fires in its vulnerable peatlands. These fires ravaged a substantial area, esti-
mated to be between 117,367 and 144,410 hectares (ha) of peatland within the province
[KLHK, 2020]. The impact of these fires was particularly severe in specific areas, with
approximately 6580 ha of burned peatlands located in villages situated within or adjacent
to former restoration and conservation project areas in the Banyuasin, Muba, and Ogan
Komering Ilir Regencies. Furthermore, an additional 13,061 ha of peatland succumbed to
the flames within oil palm plantations, while a staggering 67,846 ha were engulfed in fires
within logging concessions [Budiman et al., 2021].

Within the PHU Sugihan-Lumpur area, four villages have implemented livelihood
revitalization initiatives and participated in the Peat Care Village programs. These efforts
included providing essential livelihood support to the local community. However, it’s
noteworthy that these villages did not undertake additional restoration activities, such
as peat rewetting. Unfortunately, the reliance solely on livelihood revitalization and the
programs proved insufficient to mitigate peatland fire risk. From September to October
2019, these villages experienced fires that ravaged 14,113 ha of peatland. A notable fire
vulnerability persists despite groundwater monitoring stations in 8 out of 10 restoration
areas [Budiman et al., 2021].

While notable progress has been made in peatland protection, significant threats still
loom. Before recent conservation endeavors, numerous companies obtained concession
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Figure 1. Study area consisting of nine peat hydrological units.

permits encompassing vast protected peatland expanses. Alarmingly, over 25 percent of
the total 12.2 million hectares (30 million acres) of protected peatland has already been
allocated for concession areas, primarily geared toward pulpwood and palm oil plantations,
or possesses the potential for conversion into plantation or agricultural usage [Hidayah
et al., 2018]. It highlights the persistent challenge of safeguarding these critical ecosystems
against existing and potential land use pressures.

2.2. Land Cover Classification

We classified land cover over the study area by combining 544 radar images from
Sentinel-1 and 2923 optical imageries, comprising 2318 Sentinel-2, and 605 Landsat-8
from January 2015 to August 2023. We preprocessed the image using Google Earth Engine
(GEE). The radar data analysis involved using dual-polarized C-band data acquired by the
Synthetic Aperture Radar (SAR) instrument aboard the S1A satellite.

The Level-1 Ground Range Detected product (GRD), as provided by GEE, was em-
ployed in this analysis. These GRD images underwent radiometric calibration and orthorec-
tification. Two distinct polarization modes were used: single and dual-band co-polarization
with vertical transmit/receive (VV) and horizontal receive (VH). An additional preprocess-
ing step was implemented, which involved spatial filtering through a 7 X 7 Refined Lee
speckle filter to mitigate the inherent speckle noise found in radar images. This prepro-
cessing step was crucial for enhancing the suitability of the images for land cover detection
at the spatial resolution employed in this research.

Furthermore, additional bands, such as the VH/VV ratio, the normalized ratio proce-
dure between bands (NRPB) [Filgueiras et al., 2019], and the radar vegetation index (RVI)
[Yamada, 2015] were generated. For each observation date, a composite image comprising
five bands (VV, VH, VH/VV ratio, NRPB, and RVI) was created, as this combination has
been identified as optimal for characterizing land cover. Images were temporally combined
by calculating median values for each band, resulting in the generation of composites
spanning a one-year timeframe.

Sentinel-2 data, processed at level 1C as sourced from GEE, were employed. These
data have undergone orthorectification and radiometric correction, resulting in top-of-
atmosphere reflectance values. Bands 2 to 8 were selected and four indexes, namely
Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index
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Table 1. Bands and indices of each satellite for classification

Satellite Bands/Indices

Sentinel-1 VV, VH, VH/VV, NRPB, and RVI
Sentinel-2 B2-8, 11, 12, NDVI, NDBI, S2REP, and IRECI,
Landsat-8 B2-7, soil, GV, NPV, GVs, shade, and NDFI

(NDBI), Sentinel-2 Red-Edge Position (S2REP), and Inverted Red-Edge Chlorophyll Index
(IRECI), were derived for use, with their initial spatial resolutions at 10 meters. An
automated cloud masking procedure was implemented to ensure data quality, utilizing
band QA60 from the S2 1C product, effectively masking both opaque and cirrus clouds.
Moreover, parameters derived from Landsat-8 are described in the following sub-section.

Table 1 shows the bands of each satellite for the classification input dataset. Several
indices were also derived from each dataset to be included as the input. These bands
and indices from Sentinel-1, Sentinel-2, and Landsat-8 images were merged into a single
fused image using the ‘addBands( ) function’ in Google Earth Engine. Parameters were
derived from unmixed fractions of the Landsat-8, such as Soil, Green Vegetation (GV),
Non-Photosynthetic Vegetation (NPV), Shade-normalized Green Vegetation (GVs), Shade,
and NDFI. More relevant feature variables boost classification accuracy [Amoakoh et al.,
2021].

Following the standardization of band values through band normalization, band
stacking was carried out by aggregating all the processed radar and optical images for
input each year. In this study, the Random Forest algorithm has been selected as the
classifier. This algorithm assigns equal weight to each of the band layer stack images. Equal
weighting in Random Forest (RF) classification ensures all features contribute equally
to the model's decision-making process. This approach simplifies the modeling process,
prevents bias, makes the model more robust to changes in the dataset, promotes balanced
decision-making, and assumes equal importance. The RF approach employs a collection of
decision trees to enhance prediction accuracy [Breinan, 2001]. We applied the Random
Forest classification algorithm due to its robustness and ability to handle complex land
cover patterns.

Based on field observation and image identification, we created point features for
different land cover classes. Each point was assigned a class label representing the land
cover class. To avoid overfitting, the labeled data was split into training and validation sets,
60% and 40%, respectively. The RF classifier with 120 trees was trained using the training
dataset, and the classifier learned the underlying patterns and relationships between the
features and class labels in the training data. The classifier performance was evaluated
using the validation set. The trained model was then deployed to predict land cover across
the study area.

2.3. Mapping Peatland Degradation

Peatland degradation is a critical environmental issue; remote sensing techniques are
used on satellites. This study mapped peatland degradation using USGS Landsat 8 Level 2,
Collection 2, Tier 1 from 2015 to 2023. We removed clouds and shadows from Landsat
8 imagery in GEE using the Quality Assessment (“QA_PIXEL”) band to mask out pixels
with clouds and shadows. To create a cloud-free composite image, we used the median to
combine multiple cloud-masked images into one representative image for a year.

We Applied an SMA algorithm to find the linear combination of endmember spectra
that best matches the observed mixed pixel spectrum. The output of SMA is a set of
fractional maps representing the spatial distribution of different land cover components
within each pixel. These maps indicate the proportion of each endmember (e.g., vegetation,
soil, water) present in each pixel. By comparing fractional maps from different periods, we
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Table 2. Reflectance values of the Landsat-8 endmembers

Reflectance Values of Landsat-8

Endmember Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
(Blue) (Green) (Red) (NIR) (SWIR 1) (SWIR 2)
NPV 0.1514 0.1597 0.1421 0.3053 0.7707 0.1975
GV 0.0119 0.0475 0.0169 0.6250 0.2399 0.0675
Soil 0.1799 0.2479 0.3158 0.5437 0.7707 0.6646
Cloud 0.4031 0.8714 0.7900 0.8989 0.7002 0.6607

identified changes in the distribution of land cover components. It is beneficial for tracking
the progression of peatland degradation, such as changes in vegetation and soil exposure.

We defined the Landsat-8 endmembers based on a previous study [Souza Jr. et al.,
2005]. The pure reflectance values for the blue, green, red, NIR, SWIR1, and SWIR2 bands
of the Landsat-8 for different endmember materials like NPV, GV, Soil, and Cloud are
presented in Table 1.

Unmixing the Landsat-8 image using the built-in ‘unmix ()’ function in Google Earth
Engine involves estimating the fractional abundances of endmembers in each image pixel.
The unmixed fractions were then converted to the image of the SMA model of the study
area. The Shade and GVs fractions are used in the spectral mixture analysis to estimate
the proportion of shaded and sunlit vegetation within a pixel. These fractions provide
information about the vegetation canopy structure and can be calculated from the SMA
results. The Shade fraction represents the pixel proportion covered by shadows or shaded
areas. It is calculated by subtracting the sum of the GV and NPV fractions from 1:

Shade =1 — (GV = NPV).

The GVs was accounted for the shading effect by dividing the Green Vegetation (GV)
fraction by the complement of the Shade fraction:

GV

GVs = 100 - Shade

The NDFI enhancing the degradation signal caused by selective logging and burning
was computed using the derived fraction images by:

GV — (NPV + Soil)

NDFL = oy NPV + Soil -

Water and clouds affecting how we monitor forest degradation and loss were masked
using a thresholding method based on the values of the fraction images. A water mask was
created using threshold values for the Shade, GV, and Soil bands, where Shade is greater
than or equal to 0.65, GV is less than or equal to 0.15, and Soil is less than or equal to 0.05.
Meanwhile, a cloud mask was created by applying a threshold of 0.1 or more significant to
the Cloud band.

Changes in NDFI that indicate forest change were obtained by calculating the differ-
ence between the two images. A temporal color composite was generated using two yearly
NDFI images to enhance changes between them. The NDFI changes were then classified
by defining a threshold based on inspecting the histogram and the NDFI temporal color
composite.

3. Results and Discussion
3.1. Land cover analysis

Figure 2 shows the classified land cover over the study area. This land cover was
classified into seven major land cover classes, i.e., tree cover, shrubland, grassland, cropland,
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built-up, bare/sparse vegetation, and water bodies. The tree cover class includes peat
forests, oil palm plantations, rubber plantations, and mangroves. We defined shrub class
as woody perennial plants characterized by persistent, woody stems and no single, well-
defined main stem, typically standing at a height of less than 5 meters. Any geographic area
dominated by natural herbaceous plants (without persistent stems or shoots above ground
and lacking defined hard structure) is classified as grass. Grasslands, prairies, steppes,
savannahs, and pastures are examples of grasslands. Cropland refers to cultivated land
that can be harvested at least once within a 12-month following the first sowing or planting.
Built-up refers to areas occupied by buildings, roads, and various other human-made
constructions, including railroads. Built-up refers to areas occupied by buildings, roads,
and different other human-made constructions, including railroads. Furthermore, the term
“water class” is employed to categorize various aquatic environments such as fish ponds,
rivers, and other bodies of water.

Figure 2. Classified land cover overlaid with hotspots from 2015-2023.

The overall accuracy (OA) of our land cover classification for 2015-2023 ranges from
90-94%, with a Kappa coefficient of 0.87-0.92, indicating a high level of accuracy and
agreement between predicted and observed land cover classes, as shown in Table 3. The
accuracy of the producers' (PA) and users' (UA) is also presented in this table. We randomly
selected validation points to validate the classification and compared the predicted classes
with observed land cover types in the field. The accuracy assessment showed that the
model performed well across different land cover classes, with minimal misclassifications.
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Table 3. Accuracy measurements of land cover

Tree Cover Shrubland Grassland Cropland Built-up Bare/sp.arse Water bodies

Year Kappa OA vegetation
PA UA PA UA PA UA PA UA PA UA PA UA PA UA
2015 092 094 096 1.00 1.00 090 085 0.86 080 080 0.67 1.00 1.00 094 1.00 1.00
2016 090 092 1.00 088 1.00 093 080 092 080 1.00 1.00 1.00 070 1.00 1.00 1.00
2017 0.87 090 094 091 082 09 09 090 080 1.00 1.00 1.00 1.00 0.80 0.71 1.00
2018 090 092 092 095 085 1.00 1.00 0.82 1.00 086 0.67 1.00 0.90 090 1.00 1.00
2019 0.88 091 1.00 097 086 0.86 094 0.76 057 1.00 0.00 000 0.81 1.00 1.00 1.00
2020 089 091 091 094 100 093 095 1.00 1.00 050 100 075 0.67 080 1.00 1.00
2021 090 093 1.00 0.89 1.00 090 1.00 1.00 1.00 1.00 1.00 1.00 0.62 1.00 1.00 1.00
2022 0.89 092 094 096 077 090 1.00 0.82 083 0.83 1.00 1.00 0.92 086 1.00 1.00
2023 0.87 090 096 1.00 0.7 1.00 091 0.83 080 0.7 0.67 1.00 1.00 075 1.00 1.00

Detailed information on the extent percentage of each class’s area is presented in
Figure 3. The tree cover shows some fluctuations over the years. Land cover changes in
a region like South Sumatra can be complex and influenced by multiple factors spatially
and temporally. The extreme climate, El Nifio events, are generally associated with drier
conditions and increased fire risk, leading to potential negative impacts on vegetation.
Tree cover increased in 2017 and 2020 but was lower in 2015, 2019, and 2023, directly
correlated with El Nino which had lower precipitation and drier over the study area. In
such situations, vegetation may already be stressed and more susceptible to degradation.

By comparing our classification results with historical data, we observed a significant
decrease in forest cover in 2019, indicated by low tree cover (47.1% of the total area of
1.054 million ha), primarily attributed to fires and logging. Therefore, grassland and
bare/sparse vegetation had more significant coverage percentages, reaching 22.89% and
11.40%, respectively. It suggests that the severity of the peat fires in South Sumatra in
2019 might surpass those observed in 2015. However, both El Nino in 2015 and 2019
likely contributed to reduced precipitation in those years, which could have led to drier
conditions and increased fire risk.

The increase in 2017 and 2020 could be related to recovery after the El Nino events.
However, tree cover had a slightly larger percentage in 2015 than in 2016. The impact of
an El Nifio event on any specific vegetation type may not be immediate. It can take some
time for the full effects of decreased precipitation and increased fire activity to manifest.
In some ecosystems, fire is a natural and essential ecological process. Certain plant species
have adaptations that allow them to thrive after a fire. However, intense fires can still lead
to degradation if ecosystems cannot regenerate properly between fire events. In the case of
the study area, the reduced precipitation and increased fire risk during the 2015 EI Nino
event might have directly affected shrubland in that year and tree cover in subsequent
years, including 2016.

On the other hand, human activities play a significant role in shaping land cover
changes. Human activities, such as agricultural burning, land clearing, or accidental
ignition, start many fires. Most fires occurred over the cultivation area in the PHU of
Sungai Saleh — Sungai Sugihan in 2015, 2018, and 2023. In these areas, drained peatlands
were used for agriculture and cultivation. In areas where human-induced fires are common,
vegetation degradation can occur due to the cumulative impact of these fires. On the other
hand, many hotspots can also be identified in the protected area, especially in the PHU
of Sugai Sugihan — Sungai Lumpur, in 2017, 2018, 2020, and 2021. Spatial correlations
between land cover changes and fire hotspots often result from natural ecological processes,
human activities, and environmental factors.
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Figure 3. Percentages of classified land cover classes from 2015-2023.

3.2. Degradation analysis

This study also mapped peatland degradation to identify the factors causing changes
in land cover. The data used for the degradation analysis consisted of Landsat-8 images
from 2015 to 2023, covering the study area. The pure reflectance values for the blue,
green, red, SWIR1, and SWIR2 spectral bands from the Landsat images were utilized for
identifying endmembers such as NPV, GV, and Soil, as illustrated in Figure 4b—d. Unmixing
the Landsat-8 images using the Singular Value Decomposition (SVD) method involved
estimating the abundance fractions of endmembers in each image pixel.

The fractions obtained from the singular value docomposition were then transformed
into a SMA model image for the study area. The Shade and GVs fractions, as shown in
Figure 4e,f, were used in spectral mixture analysis to estimate the proportions of vegetation
in a pixel that was shaded and exposed to sunlight. These fractions provide information
about the canopy structure of vegetation and can be computed from the SMA results. The
Shade fraction represents the proportion of pixels covered by shadows or areas shaded
by vegetation. Then, from the GVs, NPV, and Soil fractions, the NDFI is calculated. For
example, NDFI maps for 2019 and 2020 were used to map land degradation in 2020 by
mapping the NDFI changes between these two consecutive years. The NDFI for those years
and their changes can be displayed in Figure 4g-i.

Water and cloud, which can affect the mapping of forest degradation and damage,
must be excluded from the calculations, often referred to as masking, using a threshold-
based method based on the values of the fraction images. The water mask is created using
threshold values for the Shade, GV, and Soil fractions, where Shade is greater than or equal
to 0.65; GV is less than or equal to 0.15; and Soil is less than or equal to 0.05. Meanwhile,
the cloud mask is created by applying a threshold of 0.1 or greater to the Cloud fraction.

Changes in NDFI indicating land changes are obtained by calculating the difference
between these two images. A temporal color composite is generated using two annual
NDFI images to highlight the changes between them. The changes in NDFI are then
classified by defining thresholds and the temporal color composite of NDFI. In the Landsat
8 composite map (Figure 4a), green indicates vegetation, and brown represents bare land.
Bare land without vegetation corresponds to what the Soil fraction map shows, which
appears whiter. The whiter the color in the GV and GVs fraction maps, the more vegetated
the area. Similarly, for other fraction maps, such as NPV and Shade, the whiter color
indicates higher fraction values, reflecting the condition of the depicted objects.

Peatland degradation in South Sumatra, Indonesia, is primarily caused by human
activity and environmental factors. Draining peatlands for agricultural purposes, particu-
larly the creation of oil palm plantations and rice fields, upsets the natural hydrological
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Figure 4. Maps of (a) Landsat-8 RGB composite, (b-f) Landsat-8 fractions, (g) NDFI 2019, (h) NDFI
2020, and (i) NDFI change from 2019-2020.

equilibrium, causing the water table to decrease and the peat to dry out. This accelerates
the breakdown process and releases stored carbon into the environment. Large-scale land
conversion exacerbates the problem, as enormous sections of peatland are removed and
transformed into plantations. The loss of natural vegetation exposes the peat to oxidation,
accelerating decomposition. Furthermore, the region is prone to peat fires, particularly
during the dry season. Climate change exacerbates these difficulties by changing precipita-
tion patterns and increasing the frequency of extreme weather events like droughts and
wildfires, putting additional strain on already degraded peatlands. The orange on the
NDFI maps (Figure 4g,h) indicates forest disturbance related to fires and selective logging.
Meanwhile, the pink and white colors represent dry vegetation and bare land in previously
logged forests. In grassland areas, the orange color indicates dry vegetation. The NDFI
change map in Figure 4i used red to depict new deforestation, and pink represents selective
logging. The cyan color indicates vegetation regrowth in areas logged or burned a year or
more ago.

NDFI changes were classified to identify vegetation disturbances, deforestation, and
vegetation regrowth spatially and temporally from 2015 to 2023, as presented in Figure 5.
These maps are overlaid with the distribution of fire hotspots to analyze the relationship
between the NDFI change classification and the locations of fire occurrences. Generally,
these changes relatively corresponded to the identified hotspot distribution, indicating

Russ. J. Earth. Sci. 2024, 24, ES4012, EDN: YGBEBU, https://doi.org/10.2205/2024es000914 10of 15


https://elibrary.ru/ygbebu
https://doi.org/10.2205/2024es000914

MoniTorING LAND CovER Dynamics AND FOREST DEGRADATION IN SOUTH SUMATRA PEATLANDS. .. KHAKIM ET AL.

Figure 5. NDFI changes classes overlaid the hotspot from 2015-2023.

that the degradation caused by land fires obtained from the NDFI change classification
aligns with the observed fire events. According to the NDFI change categorization map,
the PHU of Sungai Sugihan — Sungai Lumpur, situated in the eastern region of the research
area, had the highest degree of degradation. Subsequently, the adjacent PHU located to
the west, specifically Sungai Saleh — Sungai Sugihan, exhibits a similarly significant level
of degradation. Although these PHUs have encountered more severe degradation, it is
essential to note that the peatland ecosystems within them exhibit distinct characteristics.
Specifically, the PHU Sungai Saleh — Sungai Sugihan encompasses cultivated areas, whereas
the PHU Sungai Sugihan — Sungai Lumpur comprises protected areas.

In addition, the extent of the percentage of degraded areas can be calculated based on
the NDFI change classification, as presented in Figure 6. According to these calculations,
the most severe degradation occurred in 2015, followed by 2019. The percentage of no
forest change has gradually increased from 2015 to 2018, showing that these areas have
comparatively recovered from the effects of the El Nifo in 2015. On the other hand, it
declined between 2019 and 2020 before climbing back up to 2023. Forest disturbance
includes activities that negatively impact the forest but may not necessarily result in
deforestation. This category covers disturbances such as logging, selective harvesting, or
fires. Forest disturbance decreased from 2015 to 2018 but slightly increased in the last
few years. New deforestation refers to converting forested areas into non-forest land cover
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types. It indicates the loss of forested land. New deforestation varied over the years but
showed a declining trend from 2015 to 2023, suggesting that efforts might have been made
to reduce deforestation. Vegetation regrowth represents areas where new vegetation has
grown, naturally or through reforestation, following previous disturbances. Vegetation
regrowth increased notably from 2016 to 2020 and remained relatively stable afterward. It
may indicate successful reforestation or natural regeneration.

Figure 6. Variation of area percentages for four NDFI change classes from 2015-2023.

Key observations from the results are the data suggests that there has been a reduction
in new deforestation over the years, which is a positive sign for forest conservation efforts;
the increase in vegetation regrowth from 2016 to 2020 is noteworthy and indicates restora-
tion efforts or natural recovery in previously disturbed areas; forest disturbance decreased
from 2015 to 2020 but showed a slight increase in the last few years, which should be
monitored to ensure sustainable forest management practices.

4. Conclusion

Our study analyzed land cover dynamics and forest degradation in South Sumatra’s
peatlands from 2015 to 2023 using Random Forest classification and NDFI change analysis
with a multi-temporal dataset from Sentinel-1, Sentinel-2, and Landsat-8. The classification
results showed seven land cover classes consisting of tree cover, shrubland, grassland, farm-
land, built-up regions, bare/sparse vegetation, and water bodies, offering a comprehensive
picture of land cover changes in the study area. Accuracy of 90% to 94% and a Kappa
coefficient of 0.87 to 0.92 shows significant agreement between predicted and actual land
cover classifications across categories. Our classification model’s low misclassification rate
proves its usefulness for monitoring peatland land cover changes.

The comprehensive examination of land cover alterations throughout the study un-
veiled variations in the extent of tree cover, which were impacted by intricate spatial and
temporal factors. It is worth mentioning that the effects of El Nifio occurrences, which
are linked to arid conditions and heightened susceptibility to fires, were noted during
periods of diminished tree coverage. The year 2019 experienced a notable decline in forest
area, predominantly because of fires and logging operations. Consequently, there was an
expansion in grassland coverage and an increase in areas with limited or no vegetation.
Forest disturbance increased slightly in recent years after decreasing from 2015 to 2020.
Anthropogenic activities, such as the deliberate burning of agricultural fields and the clear-
ance of land, have significantly influenced alterations in land cover. The areas in the two
PHUs have more severe degradation, and the gradation occurred in regions with distinct
peatland ecosystem functions. The PHU of Sungai Saleh — Sungai Sugihan degraded mainly
in the cultivation area, while the PHU of Sungai Sugihan — Sungai Lumpur in the protected
areas.

Russ. J. Earth. Sci. 2024, 24, ES4012, EDN: YGBEBU, https://doi.org/10.2205/2024es000914 12 0f 15


https://elibrary.ru/ygbebu
https://doi.org/10.2205/2024es000914

MoniTorING LAND CovER DynamMics AND FOREST DEGRADATION IN SOUTH SUMATRA PEATLANDS. .. KHAKIM ET AL.

The areas with the highest levels of fire activity were primarily located in regions
where fires caused by human activities were prevalent, namely on drained peatlands
utilized for agricultural purposes. Furthermore, the presence of fire hotspots was seen
within designated protected areas, indicating the intricate relationship between natural
biological processes, human actions, and environmental elements in influencing alterations
in land cover and degradation of forests.

Our study suggests that South Sumatra peatlands are ecologically important and
vulnerable to natural and human-induced processes, making monitoring and conservation
essential. Advanced remote sensing and historical data help policymakers and land man-
agers establish proactive policies to conserve these vital ecosystems in the face of changing
environmental challenges.
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