LINEAR PERTURBATIONS OF THE BLOCH TYPE OF SPACE-PERIODIC MAGNETOHYDRODYNAMIC STEADY STATES. III. ASYMPTOTICS OF BRANCHING

封面

如何引用文章

全文:

作者简介

R. Chertovskih

Institute of Earthquake Prediction Theory and Mathematical Geophysics Russian academy of sciences

编辑信件的主要联系方式.
Email: vlad@mitp.ru
ORCID iD: 0000-0002-5179-4344
Scopus 作者 ID: 35794881600
Researcher ID: F-3001-2010

V. Zheligovsky

Institute of Earthquake Prediction Theory and Mathematical Geophysics Russian academy of sciences

Email: vlad@mitp.ru

参考

  1. Andrievsky, A., A. Brandenburg, A. Noullez, and V. Zheligovsky (2015), Negative magnetic eddy diffusivities from the test-field method and multiscale stability theory, The Astrophysical Journal, 811(2), 135, https://doi.org/10.1088/0004-637x/811/2/135.
  2. Arnol’d, V., Y. Zel’dovich, A. Ruzmaikin, and D. Sokolov (1982), Steady-state magnetic field in a periodic flow, Soviet Physics–Doklady, 266(6), 1357–1361 (in Russian).
  3. Chertovskih, R., and V. Zheligovsky (2023 a), Linear perturbations of the Bloch type of space-periodic magnetohydrodynamic steady states. I. Mathematical preliminaries, Russian Journal of Earth Sciences, 23, ES3001, https://doi.org/10.2205/2023ES000834.
  4. Chertovskih, R., and V. Zheligovsky (2023 b), Linear perturbations of the Bloch type of space-periodic magnetohydrodynamic steady states. II. Numerical results, Russian Journal of Earth Sciences, 23, ES4004, https://doi.org/10.2205/2023ES000838.
  5. Rasskazov, A., R. Chertovskih, and V. Zheligovsky (2018), Magnetic field generation by pointwise zero-helicity threedimensional steady flow of an incompressible electrically conducting fluid, Physical Review E, 97(4), 043,201, https://doi.org/10.1103/PhysRevE.97.043201.
  6. Zheligovsky, V. (2011), Large-Scale Perturbations of Magnetohydrodynamic Regimes, 330 pp., Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-18170-2.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Chertovskih R., Zheligovsky V., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可