Minerals of the apatite group from ultramafic lamprophyres of the Zima alkaline-ultramafic carbonate complex (Urik-Iya graben, Eastern Sayan region)
- Authors: Nugumanova Y.N.1, Kalugina A.D.1,2, Starikova A.E.1,3, Doroshkevich A.G.1,4, Prokopyev I.R.1
-
Affiliations:
- V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
- A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
- Novosibirsk State University
- N.l. Dobretsov Geological institute, SB RAS
- Issue: Vol 23, No 4 (2023)
- Pages: 589-602
- Section: Articles
- URL: https://journal-vniispk.ru/1681-9004/article/view/311143
- DOI: https://doi.org/10.24930/1681-9004-2023-23-4-589-602
- ID: 311143
Cite item
Full Text
Abstract
About the authors
Ya. N. Nugumanova
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Email: nugumanovayn@igm.nsc.ru
A. D. Kalugina
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS; A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
A. E. Starikova
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS; Novosibirsk State University
A. G. Doroshkevich
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS; N.l. Dobretsov Geological institute, SB RAS
I. R. Prokopyev
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
References
- Багдасаров Ю.А. (2001) Металлогения карбонатитовых комплексов России. Металлогения магматических комплексов внутриплитовых геодинамических обстановок. М.: ГЕОС, 128-506.
- Василенко А.А. (1996) Отчет о результатах поисково-оценочных работ на Большетагнинском апатит-редкометальном месторождении и Ярминском торий-редкометальном рудопроявлении за 1988-1992 гг. Иркутский филиал ФГУ “ТФИ по Иркутской области”.
- Корнаков В.В., Матвейчук А.А., Кнутова С.В. (2019) Государственная геологическая карта Российской Федерации масштаба 1 : 200 000. Издание второе. Серия Восточно-Саянская. Лист N-47-XXIII (Белая Зима). М.: Роснедра, 132 с.
- Нугуманова Я.Н., Калугина А.Д. (2022) Особенности состава минералов группы апатита из ультраосновных лампрофиров Большетагнинского щелочно-ультраосновного карбонатитового массива (Восточно-Саянская область). Тр. Ферсмановской науч. сессии ГИ КНЦ РАН, (19), 266-270.
- Савельева В.Б., Данилова Ю.В., Базарова Е.П., Данилов Б.С. (2020) Кимберлитоподобные породы Урикско-Ийского грабена, Восточное Присаянье: минеральный состав, геохимия и условия формирования. Геодинамика и тектонофизика, 11(4), 678-696. https://doi.org/10.5800/GT-2020-11-4-0500
- Секерин А.П., Меньшагин Ю.В., Лащенов В.А. (1995) Присаянская провинция высококалиевых щелочных пород и лампроитов. Докл. АН, 342(1), 82-86.
- Фролов А.А., Белов С.В. (1999) Комплексные карбонатитовые месторождения зиминского рудного района (Восточный Саян, Россия). Геология руд. месторождений, 41(2), 109-130.
- Фролов А.А., Лапин А.В., Толстов А.В., Зинчук Н.Н., Белов С.В., Бурмистров А.А. (2005) Карбонатиты и кимберлиты (взаимоотношения, минерагения, прогноз). М.: НИА-Природа, 540 с.
- Awonusi A., Morris M.D., Tecklenburg M.M.J. (2007) Carbonate Assignment and Calibration in the Raman Spectrum of Apatite. Calcified Tissue Int., 81(1), 46-52.
- Chakhmouradian A.R., Reguir E.P., Mitchell R.H. (2002) Strontium-apatite: New occurrences, and the extent of Sr-for-Ca substitution in apatite-group minerals. Can. Mineral, 40, 121-136.
- Chakhmouradian A.R., Reguir E.P., Zaitsev A.N., Couëslan C., Xue C., Kynicky J., Mumin H., Yang P. (2017) Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274-275, 188-213.
- Comodi P., Liu Yu, Frezzotti M.L. (2001) Structural and vibrational behavior of fluorapatite with pressure. Part II: in situ micro-Raman spectroscopic investigation. Phys. Chem. Minerals, 28, 225-231.
- Dalton H.B., Giuliani A., O’Brien H., Phillips D., Hergt J. (2019) Petrogenesis of a hybrid cluster of evolved kimberlites and ultramafic lamprophyres in the Kuusamo area, Finland. J. Petrol., 60(10), 2025-2050. https://doi.org/10.1093/petrology/egz062
- Doroshkevich A.G., Veksler I.V., Izbrodin I.A., Ripp G.S., Khromova E.A., Posokhov V.F., Travin A.V., Vladykin N.V. (2016) Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: Implications for the sources of the parental magma and metasomatizing fluids. J. Asian Earth Sci., 26, 81-96.
- Egorov K.N., Kiselev A.I., Men'Shagin Y.V., Minaeva Y.A. (2010) Lamproite and Kimberlite of the Sayany Area: Composition, Sources, and Diamond Potential. Dokl. Earth Sci., 435(2), 1670-1675. https://doi.org/10.1134/S1028334X10120251
- Foley S., Andronikov A., Melzer S. (2002) Petrology of ultramafic lamprophyres from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland. Mineral. Petrol., 74, 361-384. https://doi.org/10.1007/s007100200011
- Ishimaru Y., Oshima Y., Imai Y., Iimura T., Takanezawa S., Hino K., Miura H. (2018) Raman Spectroscopic Analysis to Detect Reduced Bone Quality after Sciatic Neurectomy in Mice. Molecules, 23(12), 3081.
- Jones A.P., Wyllie P.J. (1984) Minor elements in perovskite from kimberlite and the distribution of rare earth elements: An electron probe study. Earth Planet. Sci. Lett., 69, 128-140.
- Jones R.H., McCubbin F.M., Guan Y. (2016) Phosphate minerals in the H group of ordinary chondrites, and fluid activity recorded by apatite heterogeneity in the Zag H3-6 regolith breccia. Amer. Mineralogist, 101(11), 2452-2467.
- Khan A.F., Awais M., Khan A.S., Tabassum S., Chaudhry A.A., Rehman I.U. (2013) Raman Spectroscopy of Natural Bone and Synthetic Apatites. appl. Spectroscopy Rev., 48, 329-355.
- Kjarsgaard B.A., Pearson D.G., Tappe S., Nowell G.M., Dowall D.P. (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos, 112, 236-248. https://doi.org/10.1016/j.lithos.2009.06.001
- Milligan R., Fedortchouk Y., Normandeau P.X., Fulop A., Robertson M. (2017) Features of apatite in kimberlites from Ekati Diamond Mine and Snap Lake, Northwest Territories, Canada: modelling of kimberlite composition. 11th international Kimberlite Conference Extended. Abstract. No. 11IKC-4519.
- Mitchel R.H. (1997) Preliminary studies of the solubility and stability of perovskite group compounds in the synthetic carbonatite system calcite-portlandite. J. Afr. Earth Sci., 25, 147-158.
- Mitchel R.H. (2008) Petrology of hypabyssal kimberlites: Relevance to primary magma compositions. J. Volcanol. Geotherm. Res., 174, 1-8.
- Mitchel R.H., Tappe S. (2008) Discussion of “Kimberlites and aillikites as probes of the continental lithospheric mantle”, by D. Francis and M. Patterson (Lithos, 109, 72-80). Lithos, 115(1), 288-292.
- Mitchell R.H. (1986) Kimberlites: mineralogy, geochemistry, and petrology. New York, Springer Science & Business Media, 442 р.
- Mitchell R.H. (1995) Kimberlites, Orangeites, and Related Rocks. New York, Springer Science & Business Media, 410 p.
- Nosova A.A., Sazonova L.V., Kargin A.V., Smirnova M.D., Lapin A.V., Shcherbakov V.D. (2018) Olivine in ultra-mafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian Pre- and post-trap aillikites. Contrib. Mineral. Petrol., 173, 55. https://doi.org/10.1007/s00410-018-1480-3
- Pan Y., Fleet M.E. (2002) Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. Rev. Mineral. Geochem., 48(1), 13-49.
- Pasero M., Kampf A.R., Ferraris C., Pekov I.V., Rakovan J., White T.J. (2010) Nomenclature of the apatite super-group minerals. Europ. J. Miner., 22, 163-179.
- Piccoli P.M., Candela P.A. (2002) Apatite in igneous systems. in “Phosphates - geochemical, geobiological, and materials importance”. (Eds M.J. Kohn, J. Rakovan, J.M. Hughes). Rev. Mineral. Geochem., 48, 255-292.
- Savelyeva V.B., Danilova Yu.V., Letnikov F.A., Demonterova E.I., Yudin D.S., Bazarova E.P., Danilov B.S., Sharygin I.S. (2022) Age and Melt Sources of Ultramafic Dykes and Rocks of the Bolshetagninskii Alkaline Carbonatite Massif (Urik-Iya Graben, SW Margin of the Siberian Craton). Dokl. Earth Sci., 505, 452-458.
- Soltys A., Giuliani А., Phillips D. (2020) Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories in coherent kimberlites caused by differing emplacement mechanisms. Contrib. Mineral. Petrol., 175(49). https://doi.org/10.1007/s00410-020-01686-0
- Tappe S., Foley S., Jenner G., Heaman L., Kjarsgaard B., Romer R., Stracke A., Joyce N., Hoefs J. (2006) Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: A Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. J. Petrol., 47(7), 1261-1315.
- Tappe S., Foley S.F., Jenner G.A., Kjarsgaard B.A. (2005) Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. J. Petrol., 46(9), 1893-1900. https://doi.org/10.1093/petrology/egi039
- Tappe S., Jenner G.A., Foley S.F., Heaman L., Besserer D., Kjarsgaard B.A., Ryan B. (2004) Torngat Ultramafic Lamprophyres and Their Relation to the North Atlantic Alkaline Province. Lithos, 76(1-4), 491-518. https://doi.org/10.1016/j.lithos.2004.03.040
- Webster J.D., Piccoli P.M. (2015) Magmatic apatite: A powerful, yet deceptive, mineral. Elements, 11, 177-182.
- Wopenka B., Pasteris J.D. (2005) A mineralogical perspective on the apatite in bone. Materials Science and Engineering, C, 25(2), 131-143.
Supplementary files
