Nanoparticles and nanomaterials as inevitable modern toxic agents. Review. Part 2. Main areas of research on toxicity and techniques to measure a content of nanoparticles in tissues

Cover Page

Cite item

Full Text

Abstract

The second part of the review considers the following three main areas of research on the toxicity of nanoparticles (NPs): environmental toxicity, molecular mechanisms of toxicity, and reproductive toxicity. The studies carried out on aquatic and soil model organisms are described, with consideration of the effects of NPs in concentrations close to natural in water with different salinity, as well as in comparison with the effects of ions. The articles devoted to various aspects of NP-induced oxidative stress are listed, the estimations of genotoxicity and mutagenicity of NPs using different standard methods are described, and the currently known data on the formation of protein crowns around NPs are considered. Questions are stated about the dose-dependence of effects and the influence of the applied stabilizing coating. The influence of NPs on the prenatal and postnatal development of various model vertebrate species is considered, which includes morphological disturbances, changes in gene expression and in the behavior of grown animals, as well as the influence on the reproductive system in adult females and males. The main methods for the quantitative measurements of the content of NPs in biological samples are also considered as the necessary stage of research on the toxicity of NPs for humans and animals.

About the authors

Alexandra L. Ivlieva

Moscow regional research and clinical institute named after M.F. Vladimirsky

Author for correspondence.
Email: ivlieva@medphyslab.com
ORCID iD: 0000-0002-0331-6233
SPIN-code: 5555-1343

researcher

Russian Federation, Moscow

Inga Zinicovscaia

Joint institute for nuclear research

Email: zinikovskaia@mail.ru
ORCID iD: 0000-0003-0820-887X
SPIN-code: 6814-1720

Dr. Sci. (Chem.)

Russian Federation, Dubna

Elena N. Petriskaya

Moscow regional research and clinical institute named after M.F. Vladimirsky

Email: medphys@monikiweb.ru
ORCID iD: 0000-0002-3836-0103
SPIN-code: 2641-3111

Cand. Sci. (Biol.)

Russian Federation, Moscow

Dmitry A. Rogatkin

Moscow regional research and clinical institute named after M.F. Vladimirsky

Email: d.rogatkin@monikiweb.ru
ORCID iD: 0000-0002-7755-308X
SPIN-code: 9130-8111
http://www.medphyslab.ru

Dr. Sci. (Technic), Associate Professor

Russian Federation, Moscow

References

  1. Trigub AG. Influence of colloidal nanosilver on freshwater and marine planktonic organisms. In: Petrova MG, editor. Theoretical and applied aspects of modern science: collection of scientific papers based on the materials of the VI International scientific and practical conference. Belgorod: IE Petrova MG Publ.; 2015:123−135.
  2. OECD Guidelines for the testing of chemicals : Daphnia sp. [Internet] Available from: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals_72d77764-en (accessed: 22.01.2021).
  3. Asghari S, Johari SA, Lee JH, et al. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. Journal of Nanobiotechnology. 2012;10:14. doi: 10.1186/1477-3155-10-14
  4. Pokhrel LK, Dubey B. Potential impact of low-concentration silver nanoparticles on predator−prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey. Environmental Science and Technology. 2012;46:7755−7762. doi: 10.1021/es204055c
  5. Joo HS, Kalbassi MR, Yu IJ, et al. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Aquatic Toxicology. 2013;140–141:398–406. doi: 10.1016/j.aquatox.2013.07.003
  6. Bertrand C, Zalouk-Vergnoux A, Giambérini L, et al. The influence of salinity on the fate and behavior of silver standardized nanomaterial and toxicity effects in the estuarine bivalve Scrobicularia plana. Environmental Toxicology and Chemistry. 2016;35(10):2550–2561. doi: 10.1002/etc.3428
  7. Yang X, Jiang C, Hsu-Kim H, et al. Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environmental Science and Technology. 2014;48:3486−3495. doi: 10.1021/es404444n
  8. Garcia-Reyero N, Kennedy AJ, Escalon BL, et al. Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environmental Science and Technology. 2014;48:4546–4555. doi: 10.1021/es4042258
  9. Rui Qi, Zhao Y, Wub Q, et al. Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere. 2013;93(10):2289–2296. doi: 10.1016/j.chemosphere.2013.08.007
  10. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26–49. doi: 10.1002/smll.200700595
  11. Rodriguez-Garraus A, Azqueta A, Vettorazzi A, de Cerain AL. Genotoxicity of silver nanoparticles. Nanomaterials. 2020;10:251. doi: 10.3390/nano10020251
  12. Yin N, Hu B, Yang R, et al. Assessment of the developmental neurotoxicity of silver nanoparticles and silver ions with mouse embryonic stem cells in vitro. Journal of Interdisciplinary Nanomedicine. 2018;3(3):133–145. doi: 10.1002/jin2.49
  13. Huang CL, Hsiao IL, Lin HC, et al. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environmental Research. 2015;136:253–263. doi: 10.1016/j.envres.2014.11.006
  14. Kukla SP, Slobodskova VV, Chelomin VP. Genotoxic effect of titanium dioxide nanoparticles on the bivalve mollusk Mytilus trossulus (Gould, 1850) in the marine environment. Marine Biology Journal. 2018;3(4):43–50. doi: 10.21072/mbj.2018.03.4.05
  15. Hu R, Zheng L, Zhang T, et al. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. Journal of Hazard Materials. 2011;191:32–40. doi: 10.1016/j.jhazmat.2011.04.027
  16. Krawczynska A, Dziendzikowska K, Gromadzka-Ostrowska J, et al. Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renine-angiotensin system in brain. Food and Chemical Toxicology. 2015;85:96–105. doi: 10.1016/j.fct.2015.08.005
  17. Sutunkova MP, Makeev OG, Privalova LI, et al. Genotoxic effect of some elemental or element oxide nanoparticles and its diminution by bioprotectors combination. Russian Journal of Occupational Health and Industrial Ecology. 2018;11:10–16. doi: 10.31089/1026-9428-2018-11-10-16
  18. Bideskan AE, Mohammadipour A, Fazel A, et al. Exposure to titanium dioxide nanoparticles during pregnancy and lactation alters offspring hippocampal mRNA BAX and Bcl-2 levels, induces apoptosis and decreases neurogenesis. Experimental and Toxicologic Pathology. 2017;69(6):329–337. doi: 10.1016/j.etp.2017.02.006
  19. Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. Journal of Applied Toxicology. 2013;33(2):78–89. doi: 10.1002/jat.2792
  20. Dabrowska-Bouta B, Zieba M, Orzelska-Gorka J, et al. Influence of a low dose of silver nanoparticles on cerebral myelin and behavior of adult rats. Toxicology. 2016;363–364:29–36. doi: 10.1016/j.tox.2016.07.007
  21. Zhou Y, Hong F, Tian Y, et al. Nanoparticulate titanium dioxide-inhibited dendritic development is involved in apoptosis and autophagy of hippocampal neurons in offspring mice. Toxicology Research. 2017;6(6):889–901. doi: 10.1039/c7tx00153c
  22. Grissa I, ElGhoul J, Mrimi R, et al. In deep evaluation of the neurotoxicity of orally administered TiO2 nanoparticles. Brain Research Bulletin. 2019;155:119–128. doi: 10.1016/j.brainresbull.2019.10.005
  23. Jumagazieva DS, Maslyakova GN, Suleymanova LV, Bucharskaya AB, Firsova SS, Khlebtsov BN, et al. Mutagenic effect of gold nanoparticles in the micronucleus assay. Bull Exp Biol Med. 2011;151(6):731-3. doi: 10.1007/s10517-011-1427-4
  24. Prokhorova IM, Kibrik BS, Pavlov AV, Pesnya DS. Estimation of mutagenic effect and modifications of mitosis by silver nanoparticles. Bull Exp Biol Med. 2013;156(2):255–259. doi: 10.1007/s10517-013-2325-8
  25. Pyatnitsa-Gorpinchenko NK. Asbestos and fibrous carcinogenesis. Environment & Health. 2014;1:4–9.
  26. Butler KS, Peeler DJ, Casey BJ, et al. Silver nanoparticles: correlating nanoparticles size and cellular uptake with genotoxicity. Mutagenesis. 2015;30:577–591. doi: 10.1093/mutage/gev020
  27. George JM, Magogotya M, Vetten MV, et al. An investigation of the genotoxicity and interference of gold nanoparticles in commonly used in vitro mutagenicity and genotoxicity assays. Toxicological Sciences. 2017;156(1):149–166. doi: 10.1093/toxsci/kfw247
  28. Guo X, Li Y, Yan J, et al. Size and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays. Nanotoxicology. 2016;10(9):1373–1384. doi: 10.1080/17435390.2016.1214764
  29. Li Y, Chen DH, Yan J, et al. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutation Research. 2012;745:4–10. doi: 10.1016/j.mrgentox.2011.11.010
  30. Chen EY, Garnica M, Wang YC, et al. A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells. Particle and Fibre Toxicology. 2012;9:2. doi: 10.1186/1743-8977-9-2
  31. Ivask A, Bondarenko O, Jepihhina N, Kahru A. Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Analytical and Bioanalytical Chemistry. 2010;398(2):701–716. doi: 10.1007/s00216-010-3962-7
  32. Xiong S, George S, Ji J, et al. Size of TiO2 nanoparticles influences their phototoxicity: an in vitro investigation. Archives of Toxicology. 2013;87(1):99–109. doi: 10.1007/s00204-012-0912-5
  33. Sarapul’tsev AP, Rempel’ SV, Kuznetsova YuV, Sarapul’tsev GP. Interaction of nanoparticles with biological objects. Journal of Ural Medical Academic Science. 2016;3:97–111. doi: 10.22138/2500-0918-2016-15-3-97-111
  34. Leonenko NS, Leonenko OB. Factors influencing the manifestation of toxicity and hazards of nanomaterials. Innovative Biosystems and Bioengineering. 2020;4(2):75–88. doi: 10.20535/ibb.2020.4.2.192810
  35. Rumyantsev KA, Shemetov AA, Nabiev IR, Sukhanova AV. Interaction of proteins and peptides with nanoparticles. Structural and functional aspects. Rossiiskie nanotekhnologii [Russian nanotechnologies]. 2013;8(11-12):18-34.
  36. Tkachenko TV, Bezryadina AS. Nanoparticles as an actual area of research. Mezhdunarodnyi studencheskii nauchnyi vestnik [International student scientific bulletin]. 2017;4-5:619–621.
  37. Brun E, Sanche L, Sicard-Roselli C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids and Surfaces B: Biointerfaces. 2009;72(1):128–134. doi: 10.1016/j.colsurfb.2009.03.025
  38. Massarsky A, Dupuis L, Taylor J, et al. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere. 2013;92:59–66. doi: 10.1016/j.chemosphere.2013.02.060
  39. Moradi-Sardareh H, Basir HRG, Hassan ZM, et al. Toxicity of silver nanoparticles on different tissues of Balb/C mice. Life Sciences. 2018;211:81–90. doi: 10.1016/j.lfs.2018.09.001
  40. Greish K, Alqahtani AA, Alotaibi AF, et al. The effect of silver nanoparticles on learning, memory and social interaction in BALB/C mice. International Journal of Environmental Research and Public Health. 2019;16(1):148. doi: 10.3390/ijerph16010148
  41. Tabatabaei SRF, Moshrefi M, Askaripour M. Prenatal exposure to silver nanoparticles causes depression like responses in mice. Indian Journal of Pharmaceutical Sciences. 2015;77(6):681–686.
  42. Dănilă OO, Berghian AS, Dionisie V, et al. The effects of silver nanoparticles on behavior, apoptosis and nitro-oxidative stress in offspring Wistar rats. Nanomedicine (Lond). 2017;12(12):1455–1473. doi: 10.2217/nnm-2017-0029
  43. Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regulatory Toxicology and Pharmacology. 2018;98:257–267. doi: 10.1016/j.yrtph.2018.08.007
  44. Warheit DB, Brown SC, Donner EM. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food and Chemical Toxicology. 2015;84:208–224. doi: 10.1016/j.fct.2015.08.026
  45. Park K, Tuttle G, Sinche F, Harper SL. Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio). Archives of Pharmacal Research. 2013;36:125–133. doi: 10.1007/s12272-013-0005-x
  46. Xin Qi, Rotchell JM, Cheng J, et al. Silver nanoparticles affect the neural development of zebrafish embryos. Journal of Applied Toxicology. 2015;35:1481–1492. doi: 10.1002/jat.3164
  47. Powers CM, Slotkin TA, Seidler FJ, et al. Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicology and Teratology. 2011;33(6):708–714. doi: 10.1016/j.ntt.2011.02.002
  48. Asmonaite G, Boyer S, de Souza KB, et al. Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach. Aquatic Toxicology. 2016;173:143–153. doi: 10.1016/j.aquatox.2016.01.013
  49. González EA, Carty DR, Tran FD, et al. Developmental exposure to silver nanoparticles at environmentally relevant concentrations alters swimming behavior in zebrafish (Danio rerio). Environmental Toxicology and Chemistry. 2018;37(12):3018–3024. doi: 10.1002/etc.4275
  50. Yamashita K, Yoshioka Ya, Higashisaka K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nature Nanotechnology. 2011;6:321–328. doi: 10.1038/NNANO.2011.41
  51. Takeda K, Suzuki K, Ishihara A, et al. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. Journal of Health Science. 2009;55(1):95–102. doi: 10.1248/jhs.55.95
  52. Shimizu M, Tainaka H, Oba T, et al. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Particle and Fibre Toxicology. 2009;6:20. doi: 10.1186/1743-8977-6-20
  53. Naserzadeh P, Ghanbary F, Ashtari P, et al. Biocompatibility assessment of titanium dioxide nanoparticles in mice feto-placental unit. Journal of Biomedical Materials Research: Part A. 2017; 106A:580–589. doi: 10.1002/jbm.a.36221
  54. Hao Y, Liu J, Feng Y, Yu Sh, et al. Molecular evidence of offspring liver dysfunction after maternal exposure to zinc oxide nanoparticles. Toxicology and Applied Pharmacology. 2017;329:318–325. doi: 10.1016/j.taap.2017.06.021
  55. Ema M, Okuda H, Gamo M, Honda K. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reproductive Toxicology. 2017;67:149–164. doi: 10.1016/j.reprotox.2017.01.005
  56. Zin’kovskaya I, Ivlieva AL, Petritskaya EN, Rogatkin DA. Surprising effect of long-term oral administration of silver nanoparticles on fertility in mice. Ekologiya cheloveka [Human Ecology]. 2020;27(10):23–30. doi: 10.33396/1728-0869-2020-10-23-30
  57. Petritskaya EN, Abaeva LF, Rogatkin DA, et al. On the toxicity of silver nanoparticles after oral administration of a colloidal solution. Almanac of Clinical Medicine. 2011;(25):9–12.
  58. Beizel’ NF. Atomno-absorbtsionnaya spektrometriya: uchebnoe posobie. Novosibirsk : Novosibirsk state university Publ; 2008.
  59. Ha Y, Tsay OG, Churchill DG. A tutorial and mini-review of the ICP-MS technique for determinations of transition metal ion and main group element concentration in the neurodegenerative and brain sciences. Monatshefte für Chemie — Chemical Monthly. 2011;142:385–398. doi: 10.1007/s00706-010-0438-6
  60. Evdokimov II, Pimenov VG, Fadeeva DA. ICP-AES high purity arsenic analysis. Analitika i kontrol` [Analytics and control]. 2015;19(1):13–20. doi: 10.15826/analitika.2015.19.1.006
  61. Pupyshev AA, Danilova DA. The use of inductively coupled plasma atomic emission spectrometry for the analysis of materials and products of ferrous metallurgy. Analitika i kontrol' [Analytics and control]. 2007;11(2-3):131–181.
  62. Meermann B, Nischwitz V. ICP-MS for the analysis at the nanoscale — a tutorial review. Journal of Analytical Atomic Spectrometry. 2018;33(9):1432–1468. doi: 10.1039/C8JA00037A
  63. Pröfrock D, Prange A. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Applied spectroscopy. 2012;66 (8): 843–868. doi: 10.1366/12-06681
  64. Wilschefski SC, Baxter MR. Inductively coupled plasma mass spectrometry: introduction to analytical aspects. The Clinical Biochemist Reviews. 2019;40(3):115–133. doi: 10.33176/AACB-19-00024
  65. Mozhayeva D, Engelhard C. A critical review of single particle inductively coupled plasma mass spectrometry — a step towards an ideal method for nanomaterial characterization. Journal of Analytical Atomic Spectrometry. 2020; 35:1740–1783. doi: 10.1039/C9JA00206E
  66. Nikolaeva IV, Palesskii SV, Karpov AV. Comparison of ICP / MS analysis of geological samples in the variant of solutions and laser ablation of glasses. Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov. 2019;330(5):26–34. doi: 10.18799/24131830/2019/5/263
  67. Koch J, Günther D. Laser ablation inductively coupled plasma mass spectrometry. Encyclopedia of spectroscopy and spectrometry. 3d ed. Lindon J., Tranter G.E., Koppenaal D., editors. Oxford: Academic Press; 2017.
  68. Haschke M. Laboratory micro-X-ray fluorescence spectroscopy. Instrumentation and applications. London: Springer Publ; 2013.
  69. Veith L, Dietrich D, Vennemann A, et al. Combination of micro X-ray fluorescence spectroscopy and time-of-flight secondary ion mass spectrometry imaging for the marker-free detection of CeO2 nanoparticles in tissue sections. Journal of Analytical Atomic Spectrometry. 2018;33:491–501. doi: 10.1039/C7JA00325K
  70. Bode P, Greenberg RR, De Nadai Fernandes EA. Neutron activation analysis: a primary (ratio) method to determine Si-traceable values of element content in complex samples. CHIMIA International Journal for Chemistry. 2009;63(10):678–680. doi: 10.2533/chimia.2009.678
  71. Frontasyeva MV. Neutron activation analysis in the life sciences. Physics of Particles and Nuclei. 2011;42(2):332–378. doi: 10.1134/S1063779611020043
  72. Zinicovscaia I, Grozdov D, Yushin N, et al. Neutron activation analysis as a tool for tracing the accumulation of silver nanoparticles in tissues of female mice and their offspring. Journal of Radioanalytical and Nuclear Chemistry. 2019;322:1079–1083. doi: 10.1007/s10967-019-06746-9
  73. Sun D, Siddiqui MOR, Iqbal K. Specialty testing techniques for smart textiles. 2nd ed. In: Smith W., editor. Smart textile coatings and laminates. Woodhead Publishing, 2018. P:99–116..
  74. Pinto AMFR, Oliveira VB, Falcão D. Direct alcohol fuel cells for portable applications fundamentals. Engineering and advances. London: Academic Press Publ; 2018.
  75. Raval N, Maheshwari R, Kalyane D, et al. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. Basic fundamentals of drug delivery. Tekade R., editor. London: Academic Press; 2019.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Ivlieva A.L., Zinicovscaia I., Petriskaya E.N., Rogatkin D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».