Adrenergic receptor mechanisms of functional sympatholysis in the regulation of regional blood flow in response to epinephrine after 5-day cold acclimation

Cover Page

Cite item

Full Text

Abstract

BACKGROUND:. During muscle contraction, blood flow in the working muscles increases tens of times due to the mechanisms of sympatholysis. However, there are no studies that would quantitatively describe the effect of epinephrine on arterial alpha-adrenergic receptors during sympatholysis against the background of 5-day cold adaptation.

AIM: Objective. To study the effect of five-day cold adaptation on the adrenoreactivity of muscle arterial vessels during sympatholysis to different doses of epinephrine.

MATERIAL AND METHODS: Material and methods. The experiments were carried out in 4 groups of rabbits. Control group (N1, n = 20) of rabbits. Sympatholysis group (N2, n = 15): electrical stimulation of muscles (frequency 5 Hz, voltage 10 V, L = 5 ms) to induce sympatholysis. Cold adaptation group (N3, n = 15) after 5-day exposure in a climatic chamber (−10 ° C, 6 h / day). Group (N4, n=15): combination of 5 days of cold adaptation with sympatholysis. In all rabbits, the limb muscles were perfused with blood through the femoral artery after ligation of all anastomoses using a constant-flow pump. After the introduction of 8 doses of epinephrine (0.5–30 μg/kg), the adrenoreactivity of the limb arteries was analyzed using the dose-effect reaction in double inverse Lineweaver–Burk coordinates. This allowed us to determine the number of active adrenoreceptors (Pm) and the sensitivity (1/Km) of adrenoreceptors to epinephrine.

RESULTS:  Sympatholysis after 5 days of cold adaptation (N4) was much less for all doses of epinephrine than without cold (N2), which proved a decrease in blood flow in the working muscles during sympatholysis against the background of cold. Analysis of this mechanism in double inverse Lineuwer-Burk coordinates revealed an increase in the number of active a-ARs (by 1.407 times or 40.7%) to Pm=312.5 mmHg during sympatholysis after cold with Pm=222 mmHg during sympatholysis without cold. At the same time, after cold (N4) during sympatholysis, the sensitivity (1/Km) of alpha-adrenoreceptors to epinephrine increased by 1.632 times (by 63.2%) to 1/Km=0.08 from the value of 1/Km=0.049 during sympatholysis without cold (N2). Complete leveling of sympatholysis after cold with 30 μg/kg epinephrine confirms the critical role of dose-dependent pharmacokinetics of arterial tone regulation under cold stress conditions.

CONCLUSION: Conclusion. The obtained data allow us to draw the following conclusion: sympatholysis against the background of 5 days of cold persists, but was less than sympatholysis without cold. Increased adrenergic vasoconstriction after 5 days of cold optimizes heat conservation, but reduces blood flow in the working muscles, which limits physical performance. The discovered mechanisms explain the phenomenon of "early cold asthenia" in individuals with short-term arctic exposure, characterized by a decrease in tolerance to physical activity while maintaining basic hemodynamic homeostasis.

About the authors

Vladimir N. Ananev

Institute of Biomedical Problems of the Russian Academy of Sciences

Author for correspondence.
Email: noradrenalin1952@mail.ru
ORCID iD: 0000-0002-4679-6441
SPIN-code: 1718-8446

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Georgy V. Ananev

Pharmstandard JSC

Email: gvananiev@pharmstd.ru
ORCID iD: 0009-0005-4287-8430
SPIN-code: 4845-8340
Russian Federation, Moscow

Vladimir I. Torshin

Peoples’ Friendship University of Russia

Email: vtorshin@mail.ru
ORCID iD: 0000-0002-3950-8296
SPIN-code: 8602-3159

Dr. Sci. (Biology), Professor

Russian Federation, Moscow

Olga V. Ananeva

Tyumen State Medical University

Email: olvasan@mail.ru
ORCID iD: 0000-0002-0672-9164
SPIN-code: 1239-5484

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Tyumen

References

  1. Voronkov NS, Popov SV, Naryzhnaya NV, et al. Effect of cold adaptation on the state of cardiovascular system and cardiac tolerance to ischemia/reperfusion injury. Iran Biomed J. 2024;28(2&3):59–70. doi: 10.61186/ibj.3872.
  2. Wakabayashi H, Sakaue H, Nishimura T. Recent updates on cold adaptation in population and laboratory studies, including cross-adaptation with nonthermal factors. J Physiol Anthropol. 2025;44(1):7. doi: 10.1186/s40101-025-00387-6.
  3. Haman F, Souza SCS, Castellani JW, et al. Human vulnerability and variability in the cold: Establishing individual risks for cold weather injuries. Temperature (Austin). 2022;9(2):158–195. doi: 10.1080/23328940.2022.2044740
  4. Ocobock C. Сold adaptation: An unfinished agenda v2.0. Am J Hum Biol. 2024;36(3):e23937. doi: 10.1002/ajhb.23937
  5. DeLorey DS, Clifford PS. Does sympathetic vasoconstriction contribute to metabolism: Perfusion matching in exercising skeletal muscle? Front Physiol. 2022;13:980524. doi: 10.3389/fphys.2022.980524
  6. Dulaney CS, Heidorn CE, Singer TJ, McDaniel J. Mechanisms that underlie blood flow regulation at rest and during exercise. Adv Physiol Educ. 2023;47(1):26–36. doi: 10.1152/advan.00180.2022.
  7. Simpson LL, Hansen AB, Moralez G, et al. Adrenergic control of skeletal muscle blood flow during chronic hypoxia in healthy males. Am J Physiol Regul Integr Comp Physiol. 2023;324(4):R457–R469. doi: 10.1152/ajpregu.00230.2022.
  8. Shechtman O, Papanek PE, Fregly MJ. Reversibility of cold-induced hypertension after removal of rats from cold. Can J Physiol Pharmacol. 1990;68(7):830–835. doi: 10.1139/y90-126
  9. Eimonte M, Paulauskas H, Daniuseviciute L, et al. Residual effects of short-term whole-body cold-water immersion on the cytokine profile, white blood cell count, and blood markers of stress. Int J Hyperthermia. 2021;38(1):696–707. doi: 10.1080/02656736.2021.1915504.
  10. Kelly KR, Pautz CM, Palombo LJ, et al. Altered sympathoadrenal activity following cold-water diving. J Spec Oper Med. 2023:23(3):74–81. doi: 10.55460/T5CZ-JXVK.
  11. Keramidas ME, Kölegård R, Gäng P, et al. Acral skin vasoreactivity. Am. J. Physiol. Regul Integr/ Comp.Physiol. 2022;323(1):R1–R15. doi: 10.1152/ajpregu.00021.2022.
  12. Smith BW, Tooley EM, Montague EQ, et al. The role of resilience and purpose in life in habituation to heat and cold pain. J Pain. 2009;10(5):493–500. doi: 10.1016/j.jpain.2008.11.007.
  13. Smolander J, Mikkelsson M, Oksa J, et al. Thermal sensation and comfort in women exposed repeatedly to whole-body cryotherapy and winter swimming in ice-cold water. Physiol Behav. 2004;82(4):691–695. doi: 10.1016/j.physbeh.2004.06.007.
  14. Mulders D, De Bodt C, Lejeune N, et al. Dynamics of the perception and EEG signals triggered by tonic warm and cool stimulation. PLoS One. 2020;15(4):e0231698. doi: 10.1371/journal.pone.0231698.
  15. Barwood MJ, Corbett J, Wagstaff CR. Habituation of the cold shock response may include a significant perceptual component. Aviat Space Environ Med. 2014;85(2):167–171. doi: 10.3357/asem.3759.2014.
  16. Tipton MJ, Golden FSC, Higenbottam C, et al. Temperature dependence of habituation of the initial responses to cold-water immersion. Eur J Appl Physiol Occup Physiol. 1998;78(3):253–257. doi: 10.1007/s004210050416.
  17. Tipton M, Eglin C, Golden F. Habituation of the initial responses to cold water immersion in humans: a central or peripheral mechanism? J Physiol. 1998;512(Pt 2):621–628. doi: 10.1111/j.1469-7793.1998.621be.x.
  18. Tipton M, Mekjavic I, Eglin C. Permanence of the habituation of the initial responses to coldwater immersion in humans. Eur J Appl Physiol. 2000;83(1):17–21. doi: 10.1007/s004210000255.
  19. Barwood M, Datta AK, Thelwell RC, Tipton MJ. Et al. Breath-hold time during cold water immersion: effects of habituation with psychological training. Aviat Space Environ Med. 2007;78(11):1029–034. doi: 10.3357/asem.2100.2007.
  20. Brück K, Baum E, Schwennicke HP. Cold-adaptive modifications in man induced by repeated short-term cold-exposures and during a 10-day and night cold-exposure. Pflügers Arch. 1976;363(2):125–133. doi: 10.1007/BF01062280.
  21. Brazaitis M, Eimantas N, Daniuseviciute L, et al. Time course of physiological and psychological responses in humans during a 20-day severe-cold-acclimation programme. PLoS One. 2014;9(4):e94698. doi: 10.1371/journal.pone.0094698.
  22. Young AJ, Muza SR, Sawka MN, et al. Human thermoregulatory responses to cold air are altered by repeated cold water immersion. J Appl Physiol. 1986;60(5):1542–1548. doi: 10.1152/jappl.1986.60.5.1542.
  23. Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 4: evolution, thermal adaptation and unsupported theories of thermoregulation. Eur J Appl Physiol. 2024;124(1):147218. doi: 10.1007/s00421-023-05262-9.
  24. Tabuchi C, Sul HS. Signaling pathways regulating thermogenesis. Front Endocrinol (Lausanne). 2021;12:595020. doi: 10.3389/fendo.2021.595020.
  25. Saltin B, Mortensen SP. Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle. J Physiol. 2012;590(24):6269–6275. doi: 10.1113/jphysiol.2012.241026
  26. Burton DA, Stokes K, Hall GM. Physiological effects of exercise. Continuing Educ Anaesthesia Crit Care Pain. 2004.:185–188. doi: 10.1093/bjaceaccp/mkh050
  27. Moynes J, Bentley RF, Bravo M, et al. Persistence of functional sympatholysis post-exercise in human skeletal muscle. Front Physiol. 2013;4:131. doi: 10.3389/fphys.2013.00131
  28. Lineweaver H, Burk D. The determination of enzyme dissociation constants. Journal of the American Chemical Society. 1934;56(3):658–666. doi: 10.1021/ja01318a0364-81.
  29. Manukhin BN, Anan’ev VN, Anan’eva OV. Effect of cold adaptation of α- and β-adrenergic responses of blood pressure in hindlimb and small intestine in situ and systemic blood pressure in rabbits. Biology Bulletin, 2007;4, (2):133–143. doi: 10.1134/S1062359007020057.
  30. Ananev VN, Ananev GV, Torshin VI, Ananeva OV. Impact of сold adaptation on reactivity of muscular arteries to epinephrine in functional sympatholysis. Ekologiya cheloveka (Human Ecology). 2024;31(4):303–313. doi: 10.17816/humeco633895
  31. Ananev VN, Ananev GV, Ananeva OV. Functional regulation of artery adrenoreceptors in response to norepinephrine administration during sympatholysis following a 30-day cold adaptation in working muscles. Human. Sport. Medicine. 2024;24(2):33–40. doi: 10.14529/hsm24020
  32. Krivoshchekov S.G., Leutin V.P., Chukhrova M.G. Psychophysiological aspects of incomplete adaptation. Novosibirsk; 1998. 100 p. (In Russ.) EDN: RNGKKD

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Increase in perfusion pressure in the femoral artery across four rabbit groups in response to eight doses of epinephrine: control group (N1), sympatholysis (N2), after 5-day cold acclimation (N3), and sympatholysis after 5-day cold acclimation (N4). X-axis: epinephrine dose (µg/kg); Y-axis: increase in perfusion pressure (mmHg). All differences between the sympatholysis group (N2) and the control group (N1) were statistically significant (p < 0.01). All differences between the group with sympatholysis after 5-day cold exposure (N4) and the 5-day cold exposure group (N3) were statistically significant (p < 0.01). Experimental data for the group with sympatholysis after 5-day cold exposure (N4) and the sympatholysis group (N2) were statistically significant (p < 0.05). The epinephrine response at 0.5 µg/kg in groups N3 and N1 was not statistically significant (p > 0.05). The epinephrine response at 30 µg/kg in groups N4 and N1 was not statistically significant (p > 0.05).

Download (146KB)
3. Fig. 2. Increase in perfusion pressure in the femoral artery across four rabbit groups in response to eight doses of epinephrine: control group (N1), sympatholysis (N2), after 5-day cold acclimation (N3), and sympatholysis after 5-day cold acclimation (N4), shown in double reciprocal Lineweaver–Burk coordinates. X-axis: inverse dose of epinephrine, 1/(µg/kg). Y-axis: inverse perfusion pressure, 1/(mm Hg).

Download (387KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».