血液微循环在不同年龄组的人口取决于城市生态系统的状态的特点
- 作者: Danilova D.A.1, Deryugina A.V.1, Starateleva Y.A.1, Talamanova M.N.1
-
隶属关系:
- National Research Lobachevsky State University of Nizhny Novgorod
- 期: 卷 31, 编号 3 (2024)
- 页面: 200-209
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journal-vniispk.ru/1728-0869/article/view/316092
- DOI: https://doi.org/10.17816/humeco634472
- ID: 316092
如何引用文章
全文:
详细
理由。 环境因素的不利影响,无论是环境还是生活在城市化人口稠密的环境中造成的因素,都决定了保护公众健康的措施的制定。 微循环床的血流动力学在维持组织稳态中起着重要作用,并且在各种疾病的大多数情况下检测到形态功能特征的违反。 与此同时,迄今为止,尚未研究微循环随年龄变化的动态,这取决于人类在各种城市化生态系统中的居住情况。
目标。 研究不同年龄组人口微循环床变化的性质,取决于城市生态系统的状态,包括一个特大城市和一个没有明显工业的小型旅游城市。
材料和方法。 这项研究涉及来自下诺夫哥罗德(一个拥有发达工业的特大城市)和Semenov(一个没有明显工业的小型旅游城市)的志愿者。 来自这些定居点的志愿者在人为负荷和环境条件方面有所不同,分为3个年龄组:1—18~44岁; 2—45~59岁,3—60~74岁。 使用激光毛细管血流分析仪"LAZMA ST"(NPP LAZMA LLC,Russia)通过激光多普勒血流仪(LDF)研究微循环。 用血流振荡的小波分析评价了振幅-频率特性.
结果。 在比较第一组特大城市和一个小型旅游城市的微循环幅频特性时,没有发现显着差异。 通过对第二组和第三组幅频谱的分析,发现微循环床结构的反应性随年龄的不同而发生变化,而微循环床结构的反应性随城市生态系统的不同而存在一定的差异。 通过内皮节律振幅(Ae),神经源性节律(An),肌源性振荡(Am)和心率振幅(Ac)的值记录了取决于城市生态系统的组间差异。 特大城市队列的特征在于Ah,Am,As的减少以及第2组和第3组Ae的增加。 在一个小城市的人群中,Am没有变化,而Ae和As在第二组中有更明显的减少,其次是第三年龄组的Ae,An,Am增加,与第一和第二年龄组相比进一步减少。 表征进入微循环床的血流功率的指标在特大城市的第三年龄组中下降。
结论。 通过LDF方法对微循环的分析,可以确定包括各种调节微循环的机制,这取决于城市生态系统的状态,随着年龄的增长和生活在特大城市时,身体的适应能力会降低。 该研究结果可用于制定预防各种城市生态系统中组织灌注不全的措施。
作者简介
Darya A. Danilova
National Research Lobachevsky State University of Nizhny Novgorod
编辑信件的主要联系方式.
Email: danilovad.a@mail.ru
ORCID iD: 0000-0002-7511-5123
SPIN 代码: 2939-0350
俄罗斯联邦, Nizhny Novgorod
Anna V. Deryugina
National Research Lobachevsky State University of Nizhny Novgorod
Email: derugina69@yandex.ru
ORCID iD: 0000-0001-8812-8559
SPIN 代码: 7974-4600
俄罗斯联邦, Nizhny Novgorod
Yulia A. Starateleva
National Research Lobachevsky State University of Nizhny Novgorod
Email: sua13@mail.ru
ORCID iD: 0009-0006-5234-5985
SPIN 代码: 9728-1346
俄罗斯联邦, Nizhny Novgorod
Maria N. Talamanova
National Research Lobachevsky State University of Nizhny Novgorod
Email: manjatal@yandex.ru
ORCID iD: 0000-0003-0512-6940
SPIN 代码: 6829-3131
俄罗斯联邦, Nizhny Novgorod
参考
- Revich BA. Environmental priorities and public health: socially vulnerable territories and population groups. Ekologiya cheloveka (Human Ecology). 2010;(7):3–9. EDN: MTVYKN
- Philippova OE, Shchegoleva LS, Shashkova EYu, Dobrodeeva LK. Immunological reactivity in megapolis residents. Ekologiya cheloveka (Human Ecology). 2021;28(1):11–16. EDN: YNPPRD doi: 10.33396/1728-0869-2021-1-11-16
- Rozanov VA, Laskaja DA, Radionov DS, Ruzhenkova VV. Psychosocial stress and its consequences among modern university students: the megalopolis factor. Ekologiya cheloveka (Human Ecology). 2023;30(11):805–820. EDN: DQOUPY doi: 10.17816/humeco622862
- Chuyan EN, Ananchenko MN. Individually-tipological features of processes of microblood circulation: influencing of lowintensity electromagnetic radiation of the millimetric range. Scientific Notes of Taurida V. Vernadsky National University. Series: Biology, Chemistry. 2009;22(4):236–254. (In Russ.) EDN: XHSMHR
- Fedorovich AA. The functional state of regulatory mechanisms of the microcirculatory blood flow in normal conditions and in arterial hypertension according to laser doppler flowmetry. Regional Blood Circulation and Microcirculation. 2010;9(1):49–60. EDN: MUHMTT doi: 10.24884/1682-6655-2010-9-1-49-60
- Chuyan EN, Tribrat NS, Dzheldubayeva ER. Changes in skin microcirculation in response to low-intensity electromagnetic radiation of the millimeter range. Russian Journal of Occupational Health and Industrial Ecology. 2020;60(9):605–609. EDN: GRLLCE doi: 10.31089/1026-9428-2020-60-9-605-609)
- Barkhatov IV. Assessment of the microcirculation system by laser Doppler flowmetry. Clinical Medicine (Russian Journal). 2013;91(11):21–27. EDN: RSHRQT
- Guven G, Hilty MP, Ince C. Microcirculation: physiology, pathophysiology, and clinical application. Blood Purif. 2020;49(1-2):143–150. doi: 10.1159/000503775
- Roustit M, Cracowski JL. Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation. 2012;19(1):47–64. doi: 10.1111/j.1549-8719.2011.00129.x
- Krupatkin AI. Blood flow oscillations — new diagnostic language in microvascular research. Regional Blood Circulation and Microcirculation. 2014;13(1):83–99. EDN: SAHYCN doi: 10.24884/1682-6655-2014-13-1-83-99
- Krupatkin AI, Sidorov VV. Laser Doppler Flowmetry of Blood Microcirculation. Moscow: Meditsina; 2005. (In Russ.) EDN: QLLIIZ
- Bokeria OL, Kuular AM. Influence of low-intensity electromagnetic fields on endothelial function in patients with chronic heart failure. Saratov Journal of Medical Scientific Research. 2014;10(1):86–92. (In Russ.) EDN: SJGXIZ
- Chuyan EN, Tribrat NS, Ravaeva MU. Change of processes of microcirculation at influence of lowintensity electromagnetic radiation of the millimetric range. Physics of the Alive. 2008;16(1):82–90. (In Russ.) EDN: SCDABP
- Kvandal P, Stefanovska A, Veber M, et al. Regulation of human cutaneous circulation evaluated by laser Doppler flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and prostaglandins. Microvasc Res. 2003;65(3):160–171. doi: 10.1016/s0026-2862(03)00006-2
- Ince C, Mayeux PR, Nguyen T, et al. The endothelium in sepsis. Shock. 2016;45(3):259–270. doi: 10.1097/SHK.0000000000000473
- Guerci P, Ergin B, Uz Z, et al. Glycocalyx degradation is independent of vascular barrier permeability increase in nontraumatic hemorrhagic shock in rats. Anesth Analg. 2019;129(2):598–607. doi: 10.1213/ANE.0000000000003918
- Jhanji S, Stirling S, Patel N, et al. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37(6):1961–1966. doi: 10.1097/CCM.0b013e3181a00a1c
- Dubin A, Pozo MO, Casabella CA, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13(3):R92. doi: 10.1186/cc7922
补充文件
