北极地区城市土壤暴露相关区域性因素的评估
- 作者: Deryabin A.N.1, Unguryanu T.N.2
-
隶属关系:
- Federal Service for Surveillance over Consumer Rights Protection and Human Wellbeing, Arkhangelsk Region office
- Northern State Medical University
- 期: 卷 31, 编号 4 (2024)
- 页面: 268-278
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journal-vniispk.ru/1728-0869/article/view/316995
- DOI: https://doi.org/10.17816/humeco630140
- ID: 316995
如何引用文章
详细
背景 。 不利的气候条件决定了北极地区人与土壤相互作用的特殊性,这种情况与俄罗斯南方地区存在显著差异。在健康风险评估中,需要根据区域特点调整标准暴露因素。
研究目的。研究北极地区城市土壤污染物对健康风险评估中所用区域性暴露因素的影响。
材料与方法。 采用横断面调查方法,对俄罗斯北极地区城市居民进行问卷调查。研究共涉及2102名参与者,包括1至6岁儿童752人、7至17岁儿童1027人及18岁及以上成年人323人。分析涵盖了与土壤暴露相关的生理和行为因素。描述性统计数据采用中位数(Ме)、相对频率及95%置信区间。假设检验采用非参数方法,包括克拉斯卡尔-沃利斯检验、两样本Wilcoxon检验和卡方检验。
结果。 1至6岁儿童在城市的平均停留时间(Ме=325天)比7至17岁儿童和成年人多10天 ( p < 0.001)。1至6岁儿童在5月至10月期间的土壤/沙地游戏天数(Ме=48天)和每日游戏时间(Ме=50分钟/天)分别是7至17岁儿童的3.2倍和1.3倍( p < 0.001)。成年居民在5月至10月期间的土地停留天数(Ме=50天)和土壤工作时间(130分钟/天)分别是7至17岁儿童的1.7倍和2.2倍( p < 0.001)。基于区域性暴露因素计算的土壤污染化学物质经口暴露的日均剂量显示:阿尔汉格尔斯克地区儿童的剂量比基于WHO和美国EPA推荐暴露因素计算的剂量高2至10倍;成年人的剂量则分别低5倍和1.2倍。
结论。 研究发现,不同年龄组人群的区域性暴露因素在数量和类别上存在显著差异。基于具体人群的区域数据调整暴露因素,可显著提高健康风险评估的准确性和可靠性。
作者简介
Aleksey N. Deryabin
Federal Service for Surveillance over Consumer Rights Protection and Human Wellbeing, Arkhangelsk Region office
编辑信件的主要联系方式.
Email: deryabin-an@mail.ru
ORCID iD: 0000-0002-1853-8947
SPIN 代码: 3611-0967
俄罗斯联邦, Arkhangelsk
Tatiana N. Unguryanu
Northern State Medical University
Email: unguryanu_tn@mail.ru
ORCID iD: 0000-0001-8936-7324
SPIN 代码: 7358-1674
MD, Dr. Sci. (Medicine), PhD
俄罗斯联邦, Arkhangelsk参考
- Rakhmanin YuA, Novikov SM, Avaliani SL, et al. Actual problems of environmental factors risk assessment on human health and ways to improve it. Health Risk Analysis. 2015;(2):4–11. EDN: RZDODK doi: 10.21668/health.risk/2015.2.01
- Stepanova NV, Fomina SF. Assessment of the total exposure to heavy metals of the child population city of Kazan. Scientific Almanac . 2016;(9–2):109–114. EDN: WZWCZN d oi: 10.17117/na.2016.09.02.109
- Stepanova NV, Fomina SF. Approaches to the assessment of health risk with the consideration of regional factors exposure and age characteristics. In: An innovative approach to solving modern problems: theory, methodology, practice . Penza: Nauka i prosveshchenie; 2016. P. 7–17. EDN: WZIQMB
- U.S. EPA. Child-Specific Exposure Scenarios Examples (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14-217F, 2014 [cited 2023 Sep 17]. Available from: http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=262211
- U.S. EPA (Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A). Interim Final. U.S. EPA, Washington, DC, EPA/500/1-89/002; 1989 [cited 2023 Sep 17]. Available from: https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf
- U.S. EPA (Environmental Protection Agency). Child-specific exposure factors handbook. National Center for Environmental Assessment. Washington, DC; EPA/600/R-06/096F; 2008 [cited 2023 Sep 17]. Available from: h ttp://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=199243
- U.S. EPA (Environmental Protection Agency). Exposure Factors Handbook, 2011 Edition (Final Report). U.S. EPA, Washington, DC, EPA/600/R-09/052F; 2011 [cited 2023 Sep 17]. Available from: http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252
- Exposure Factors Sourcebook for European Populations (with focus on UK data), Brussels, 2001 [cited 2023 Sep 17]. Available from: https://www.ecetoc.org/publication/tr-079-exposure-factors-sourcebook-for-european-populations-with-focus-on-uk-data
- Australian Department of Health. Australian Exposure Factor Guidance. Guidelines for Assessing Human Health Risks from Environmental Hazards. Australia, 2012 [cited 2023 Sep 17]. Available from: http://www.eh.org.au/documents/item/915
- Rakhmanin YuA, Shashina TA, Unguryanu TN, et al. Characteristics of quantitative values of exposure of regional factors in the studied areas. Hygiene and sanitation. 2012;91(6):30–33. EDN: PWKTIP
- Vodyanova MA, Kriatov IA, Donerian LG, et al. Ecological hygienic assessment of soils quality in urban areas. Hygiene and Sanitation. 2016;95(10):913–916. EDN: XDMUSN d oi: 10.18821/0016-9900-2016-95-10-913-916
- Kolnet IV, Studenikina EM. Organization of monitoring of soil pollution level for risk assessment to child health. Medical Scientific Bulletin of Central Chernozemye . 2017;(70):100–105. EDN: ZVLMNH
- Hubbard H, Özkaynak H, Glen G, et al. Model-based predictions of soil and dust ingestion rates for U.S. adults using the stochastic human exposure and dose simulation soil and dust model. Sci Total Environ. 2022;846:157501. d oi: 10.1016/j.scitotenv.2022.157501
- Boev VM, Zelenina LV, Kudusova LH, et al. Hygienic assessment of carcinogenic health risks associated with contamination of depositing media with heavy metals. Health Risk Analysis . 2022;(1):17–26. EDN: PSSYQM d oi: 10.21668/health.risk/2022.1.02
- Zharikova EA. Assessment of heavy metals content and environmental risk in urban soils. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering . 2021;332(1):164–173. EDN: IZRGUI doi: 10.18799/24131830/2021/1/3009
- S hur PZ, Kiryanov DA, Kamaltdinov MR, Khasanova AA. Assessing health risks caused by exposure to climatic factors for people living in the Far North . Health Risk Analysis. 2022;(3):53–62. EDN: USJNAG doi: 10.21668/health.risk/2022.3.04
- Guidelines for assessing the risk to public health from exposure to chemicals polluting the environment / P 2.1.10.3968-23. Moscow: Federal Service for Supervision of Consumer Rights Protection and Human Welfare, 2023. (In Russ.)
- Richardson GM. Canadian exposure factors handbook: Life expectancy, body dimensions, inhalation, time-activity, and soil ingestion, SK: University of Saskatchewan, Toxicology Centre; 2013 [cited 2023 Sep 17]. Available from: h ttp://studylib.net/doc/12086849
- Japanese Exposure Factors Handbook; 2007 [cited 2023 Sep 17]. Available from: http://unit.aist.go.jp/riss/crm/exposurefactors/english_summary.html
补充文件
