Фетальное программирование молярно-резцовой гипоминерализации: систематический обзор

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обоснование. Молярно-резцовая гипоминерализация — один из видов системной гипоплазии эмали, для которого характерно поражение от 1 до 4 первых постоянных моляров, часто сочетающееся с поражением резцов и встречающееся у каждого восьмого ребёнка на планете.

Цель. На основании анализа публикаций по теме фетального программирования молярно-резцовой гипоминерализации обосновать необходимость более детального изучения причин её возникновения в зависимости от влияния антенатальных и перинатальных факторов.

Методы. Сбор материала проводили с помощью электронных баз данных PubMed и eLIBRARY.RU без временны́х ограничений. Отбор исследований выполняли в два этапа. Сначала решение о включении публикаций в обзор принималось на основе названия работы и аннотации. На втором этапе авторы знакомились с полным текстом статей. Расхождения были урегулированы путём группового обсуждения авторами до достижения консенсуса. Из 157 идентифицированных исследований 29 были включены в качественный синтез.

Результаты. К антенатальным факторам молярно-резцовой гипоминерализации авторы относили анемию беременных, болезни в третьем триместре, гестационный диабет, инфекционные вирусные заболевания, проведение ультразвукового исследования в III триместре более 3 раз, преэклампсию, приём алкоголя, психологический стресс и др. Среди интранатальных факторов молярно-резцовой гипоминерализации были описаны гипоксия при рождении, длительные роды, преждевременные роды, низкий вес, стимуляция родовой деятельности, осложнения в родах, кесарево сечение и др.

Заключение. Рассмотренные в обзоре исследования демонстрируют множество анте- и перинатальных факторов развития молярно-резцовой гипоминерализации. Расширение доказательной базы в области её этиологии позволит составить эффективный алгоритм профилактики возникновения данной патологии на популяционном уровне начиная с антенатального периода.

Об авторах

Александра Андреевна Алгазина

Северный государственный медицинский университет

Автор, ответственный за переписку.
Email: algazina.sascha@ya.ru
ORCID iD: 0000-0002-3876-5960
SPIN-код: 8363-2605

MD

Россия, Архангельск

Мария Александровна Горбатова

Северный государственный медицинский университет

Email: marigora@mail.ru
ORCID iD: 0000-0002-6363-9595
SPIN-код: 7732-0755

канд. мед. наук, доцент

Россия, Архангельск

Андрей Мечиславович Гржибовский

Университет «РЕАВИЗ»; Северо-Восточный федеральный университет имени М.К. Аммосова

Email: a.grjibovski@yandex.ru
ORCID iD: 0000-0002-5464-0498
SPIN-код: 5118-0081

д-р мед. наук

Россия, Санкт-Петербург; Якутск

Екатерина Андреевна Митькина

Первый Московский государственный медицинский университет имени И.М. Сеченова

Email: miekandr@yandex.ru
ORCID iD: 0000-0002-5631-5197
SPIN-код: 5996-4317

MD

Россия, Москва

Любовь Николаевна Горбатова

Северный государственный медицинский университет

Email: Detstomkaf@yandex.ru
ORCID iD: 0000-0003-0675-3647
SPIN-код: 8037-5341

д-р мед. наук, профессор

Россия, Архангельск

Список литературы

  1. Rodd HD, Graham A, Tajmehr N, et al. Molar incisor hypomineralisation: current knowledge and practice. Int Dent J. 2021;71(4):285–291. doi: 10.1111/idj.12624 EDN: NJXXJQ
  2. Garot E, Rouas P, Somani C, et al. An update of the aetiological factors involved in molar incisor hypomineralisation (MIH): a systematic review and meta-analysis. Eur Arch Paediatr Dent. 2022;23(1):23–38. doi: 10.1007/s40368-021-00646-x EDN: SFULBV
  3. Shields S, Chen T, Crombie F, et al. The impact of molar incisor hypomineralisation on children and adolescents: a narrative review. Healthcare (Basel). 2024;12(3):370. doi: 10.3390/healthcare12030370 EDN: LHGYCX
  4. Ammar N, Fresen KF, Schwendicke F, Kühnisch J. Epidemiological trends in enamel hypomineralisation and molar-incisor hypomineralisation: a systematic review and meta-analysis. Clin Oral Investig. 2025;29(6):327. doi: 10.1007/s00784-025-06411-4
  5. Gorbatova MA, Utkina EI, Zinchenko GA, et al. Molar-incisor hypomineralization among 12-years old children in Arkhangelsk region. Stomatologiia (Mosk). 2019;98(2):64–66. doi: 10.17116/stomat20199802164 EDN: JAOOUD
  6. Luchsheva LF, Khamadeeva AM, Rusakova EY, et al. The epidemiology of molar-incisor hypomineralization in children of Khabarovsk Region. Uspehi sovremennogo estestvoznanija. 2015;(8):26–30. EDN: UIYRCN
  7. Kosyreva TF, Pronyaeva AI. Classification and prevalence of enamel hypoplasia. Pediatric Dentistry and Dental Prophylaxis. 2013;12(2):23–27. (In Russ.) EDN: RJFPXF
  8. Bukhari ST, Alhasan HA, Qari MT, et al. Prevalence and risk factors of molar incisor hypomineralization in the Middle East: A systematic review and meta-analysis. J Taibah Univ Med Sci. 2022;18(4):696–710. doi: 10.1016/j.jtumed.2022.12.011 EDN: SLXFMB
  9. Bakulski KM, Blostein F, London SJ. Linking prenatal environmental exposures to lifetime health with epigenome-wide association studies: state-of-the-science review and future recommendations. Environ Health Perspect. 2023;131(12):126001. doi: 10.1289/EHP12956 EDN: AXQKXC
  10. Dieckmann L, Czamara D. Epigenetics of prenatal stress in humans: the current research landscape. Clin Epigenetics. 2024;16(1):20. doi: 10.1186/s13148-024-01635-9 EDN: PFUVCY
  11. Lapehn S, Paquette AG. The placental epigenome as a molecular link between prenatal exposures and fetal health outcomes through the DOHaD hypothesis. Curr Environ Health Rep. 2022;9(3):490–501. doi: 10.1007/s40572-022-00354-8 EDN: JNSIMO
  12. Petrov YuA, Kupina AD. Fetal programming is a way to prevent diseases in adulthood (literature review). Medical Council. 2020;(13):50–56. doi: 10.21518/2079-701X-2020-13-50-56 EDN: GGUNQG
  13. Barker DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004;23(6 Suppl):588S–595S. doi: 10.1080/07315724.2004.10719428
  14. Basak S, Mallick R, Navya Sree B, Duttaroy AK. placental epigenome impacts fetal development: effects of maternal nutrients and gut microbiota. Nutrients. 2024;16(12):1860. doi: 10.3390/nu16121860 EDN: SCAHYQ
  15. Mortillo M, Marsit CJ. Select early-life environmental exposures and dna methylation in the placenta. Curr Environ Health Rep. 2023;10(1):22–34. doi: 10.1007/s40572-022-00385-1 EDN: BGTYBF
  16. Hoffman DJ, Powell TL, Barrett ES, Hardy DB. Developmental origins of metabolic diseases. Physiol Rev. 2021;101(3):739–795. doi: 10.1152/physrev.00002.2020 EDN: SOAXMP
  17. Lurbe E, Ingelfinger J. Developmental and early life origins of cardiometabolic risk factors: novel findings and implications. Hypertension. 2021;77(2):308–318. doi: 10.1161/HYPERTENSIONAHA.120.14592 EDN: PLNMQL
  18. Shu Z, Ding X, Yue Q, et al. Effects of fetal famine exposure on the cardiovascular disease risk in the metabolic syndrome individuals. Diabetol Metab Syndr. 2022;14(1):173. doi: 10.1186/s13098-022-00948-0
  19. Samani D, Ziaei S, Musaie F, et al. Maternal smoking during pregnancy and early childhood dental caries in children: a systematic review and meta-analysis. BMC Oral Health. 2024;24(1):781. doi: 10.1186/s12903-024-04548-4 EDN: PNZEIX
  20. Thearawiboon S, Rojanaworarit C. Risk of early childhood caries estimated by maternal dental caries during pregnancy: a retrospective cohort study. Eur J Dent. 2024;18(1):329–340. doi: 10.1055/s-0043-1769896 EDN: IKBBLY
  21. Martins DDS, Ionta FQ, Pompermaier Garlet G, et al. Developmental defects of enamel. Monogr Oral Sci. 2024;32:10–34. doi: 10.1159/000538850
  22. Lima LJS, Ramos-Jorge ML, Soares MEC. Prenatal, perinatal and postnatal events associated with hypomineralized second primary molar: a systematic review with meta-analysis. Clin Oral Investig. 2021;25(12):6501–6516. doi: 10.1007/s00784-021-04146-6 EDN: NDOJVC
  23. Ahmadi R, Ramazani N, Nourinasab R. Molar incisor hypomineralization: a study of prevalence and etiology in a group of Iranian children. Iran J Pediatr. 2012;22(2):245–251.
  24. Arheiam A, Abbas S, Ballo L, et al. Prevalence, distribution, characteristics and associated factors of molar-incisor hypo-mineralisation among Libyan schoolchildren: a cross-sectional survey. Eur Arch Paediatr Dent. 2021;22(4):595–601. doi: 10.1007/s40368-020-00594-y EDN: VZCPVB
  25. Elfrink ME, Moll HA, Kiefte-de Jong JC, et al. Pre- and postnatal determinants of deciduous molar hypomineralisation in 6-year-old children. The generation R study. PLoS One. 2014;9(7):e91057. doi: 10.1371/journal.pone.0091057
  26. Elzein R, Chouery E, Abdel-Sater F, et al. Molar-incisor hypomineralisation in Lebanon: association with prenatal, natal and postnatal factors. Eur Arch Paediatr Dent. 2021;22(2):283–290. doi: 10.1007/s40368-020-00555-5 EDN: ABUPHS
  27. Garot E, Manton D, Rouas P. Peripartum events and molar-incisor hypomineralisation (MIH) amongst young patients in southwest France. Eur Arch Paediatr Dent. 2016;17(4):245–250. doi: 10.1007/s40368-016-0235-y EDN: JAJPNC
  28. Ghanim A, Manton D, Bailey D, et al. Risk factors in the occurrence of molar-incisor hypomineralization amongst a group of Iraqi children. Int J Paediatr Dent. 2013;23(3):197–206. doi: 10.1111/j.1365-263X.2012.01244.x
  29. Laisi S, Kiviranta H, Lukinmaa PL, et al. Molar-incisor-hypomineralisation and dioxins: new findings. Eur Arch Paediatr Dent. 2008;9(4):224–227. doi: 10.1007/BF03262639 EDN: VSQWIE
  30. Lygidakis NA, Dimou G, Marinou D. Molar-incisor-hypomineralisation (MIH). A retrospective clinical study in Greek children. II. Possible medical aetiological factors. Eur Arch Paediatr Dent. 2008;9(4):207–217. doi: 10.1007/BF03262637 EDN: KGXGFZ
  31. Mohamed RN, Basha S, Al-Thomali Y, et al. Frequency of molar incisor hypomineralization and associated factors among children with special health care needs. Ann Saudi Med. 2021;41(4):238–245. doi: 10.5144/0256-4947.2021.238 EDN: ZYKFNZ
  32. Noor Mohamed R, Basha S, Virupaxi SG, et al. Primary teeth in preterm low birth weight children and its association with molar incisor hypomineralization — a 3-year-prospective study. Children (Basel). 2021;8(12):1111. doi: 10.3390/children8121111 EDN: GMLBXD
  33. Nørrisgaard PE, Haubek D, Kühnisch J, et al. Association of high-dose vitamin d supplementation during pregnancy with the risk of enamel defects in offspring: a 6-year follow-up of a randomized clinical trial. JAMA Pediatr. 2019;173(10):924–930. doi: 10.1001/jamapediatrics.2019.2545
  34. Owlia F, Akhavan-Karbassi MH, Rahimi R. Could molar-incisor hypomineralization (MIH) existence be predictor of short stature? Int J Prev Med. 2020;11:101. doi: 10.4103/ijpvm.IJPVM_459_18 EDN: TSWXLW
  35. Pascon T, Barbosa AMP, Cordeiro RCL, et al. Prenatal exposure to gestational diabetes mellitus increases developmental defects in the enamel of offspring. PLoS One. 2019;14(2):e0211771. doi: 10.1371/journal.pone.0211771
  36. Pitiphat W, Luangchaichaweng S, Pungchanchaikul P, et al. Factors associated with molar incisor hypomineralization in Thai children. Eur J Oral Sci. 2014;122(4):265–270. doi: 10.1111/eos.12136
  37. Rai A, Singh A, Menon I, et al. Molar incisor hypomineralization: prevalence and risk factors among 7-9 years old school children in Muradnagar, Ghaziabad. Open Dent J. 2018;12:714–722. doi: 10.2174/1745017901814010714
  38. Sönmez H, Yıldırım G, Bezgin T. Putative factors associated with molar incisor hypomineralisation: an epidemiological study. Eur Arch Paediatr Dent. 2013;14(6):375–380. doi: 10.1007/s40368-013-0012-0 EDN: MUOLBD
  39. Tourino LF, Corrêa-Faria P, Ferreira RC, et al. Association between molar incisor hypomineralization in schoolchildren and both prenatal and postnatal factors: a population-based study. PLoS One. 2016;11(6):e0156332. doi: 10.1371/journal.pone.0156332
  40. van der Tas JT, Elfrink MEC, Heijboer AC, et al. Foetal, neonatal and child vitamin D status and enamel hypomineralization. Community Dent Oral Epidemiol. 2018;46(4):343–351. doi: 10.1111/cdoe.12372
  41. Verma S, Dhinsa K, Tripathi AM, et al. Molar incisor hypomineralization: prevalence, associated risk factors, its relation with dental caries and various enamel surface defects in 8-16-year-old schoolchildren of lucknow district. Int J Clin Pediatr Dent. 2022;15(1):1–8. doi: 10.5005/jp-journals-10005-2088 EDN: JXCYJP
  42. Pronyaeva AI, Pronyaeva AI, Kosyreva TF. Factors influencing the prevalence of molar-incisor hypomineralization. Sbornik nauchnyh tezisov i statej “Zdorov’’e i obrazovanie v XXI veke”. 2011;(4):397–398. (In Russ.) EDN: SGOTKR
  43. Karpova LS, Tkachenko TB, Savushkina NA, et al. Analysis of enamel hypoplasia causes and risk factors in children. Pediatric Dentistry and Dental Prophylaxis. 2023;23(3):255–261. doi: 10.33925/1683-3031-2023-647 EDN: AFQIMM
  44. Martı Akgün O, Yıldırım C, Oflaz U, Topaclıoglu B. Investigating the causes of molar incisor hypomineralization: a cross-sectional study on maternal and child health factors. Rev Cient Odontol (Lima). 2024;12(4):e216. doi: 10.21142/2523-2754-1204-2024-216 EDN: ULMBOU
  45. Ahmed AT, Hector EC, Urena-Cirett JL, et al. Early lead exposure associated with molar hypomineralization. Pediatr Dent. 2023;45(5):427–433.
  46. Muñoz J, Alvarado-Lorenzo A, Criado-Pérez L, et al. Influence of maternal health status during pregnancy and the child´s medical history on molar-incisor hypomineralization in a group of Spanish children (aged 6-14 years): a retrospective case-control study. BMC Oral Health. 2024;24(1):1252. doi: 10.1186/s12903-024-05065-0 EDN: WHTPDY
  47. Contac LR, Pop SI, Voidazan S, Bica CI. Molar incisor hypomineralization: etiology, correlation with tooth number anomalies and implications for comprehensive management strategies in children from Transylvania. Diagnostics (Basel). 2024;14(21):2370. doi: 10.3390/diagnostics14212370 EDN: RAZOGM
  48. Winkler JR, Dixon BL, Singh I, et al. Prenatal exposure to environmental toxins and comprehensive dental findings in a population cohort of children. BMC Oral Health. 2024;24(1):326. doi: 10.1186/s12903-023-03786-2 EDN: AIJQXY
  49. Zameer M, Wali Peeran S, Nahid Basheer S, et al. Molar incisor hypomineralization: Prevalence, severity and associated aetiological factors in children seeking dental care at Armed Forces Hospital Jazan, Saudi Arabia. Saudi Dent J. 2024;36(8):1111–1116. doi: 10.1016/j.sdentj.2024.06.003 EDN: GFSTGA
  50. Rivera M, Karakowsky L, Medina-Solís CE, et al. Prevalence, defect characteristics and risk factors associated with molar incisor hypomineralisation in Mexican schoolchildren: a cross-sectional study. Eur Arch Paediatr Dent. 2025. doi: 10.1007/s40368-025-01078-7
  51. Muñoz J, Alvarado-Lorenzo A, Criado-Pérez L, et al. Aetiological factors in molar incisor hypomineralisation: a case-control study from Salamanca, Spain. Ital J Pediatr. 2025;51(1):129. doi: 10.1186/s13052-025-01972-2
  52. Jiménez-Farfán D, Guevara J, Zenteno E, Hernández-Guerrero JC. Alteration of the sialylation pattern of the murine tooth germ after ethanol exposure. Birth Defects Res A Clin Mol Teratol. 2005;73(12):980–988. doi: 10.1002/bdra.20198
  53. Cheng E, George AA, Bansal SK, et al. Neonatal hypocalcemia: common, uncommon, and rare etiologies. Neoreviews. 2023;24(4):e217–e228. doi: 10.1542/neo.24-4-e217 EDN: AZGAXU
  54. Ford D, Seow WK, Kazoullis S, et al. A controlled study of risk factors for enamel hypoplasia in the permanent dentition. Pediatr Dent. 2009;31(5):382–328.
  55. Wuollet E, Laisi S, Salmela E, et al. Molar-incisor hypomineralization and the association with childhood illnesses and antibiotics in a group of Finnish children. Acta Odontol Scand. 2016;74(5):416–422. doi: 10.3109/00016357.2016.1172342
  56. Bensi C, Costacurta M, Belli S, et al. Relationship between preterm birth and developmental defects of enamel: A systematic review and meta-analysis. Int J Paediatr Dent. 2020;30(6):676–686. doi: 10.1111/ipd.12646 EDN: BZWBIY
  57. Roberton NR, Smith MA. Early neonatal hypocalcaemia. Arch Dis Child. 1975;50(8):604–609. doi: 10.1136/adc.50.8.604
  58. Aine L, Backström MC, Mäki R, et al. Enamel defects in primary and permanent teeth of children born prematurely. J Oral Pathol Med. 2000;29(8):403–409. doi: 10.1034/j.1600-0714.2000.290806.x
  59. Futrakul S, Praisuwanna P, Thaitumyanon P. Risk factors for hypoxic-ischemic encephalopathy in asphyxiated newborn infants. J Med Assoc Thai. 2006;89(3):322–328.
  60. Trotman H, Henny-Harry C. Factors associated with extreme hyperbilirubinaemia in neonates at the University Hospital of the West Indies. Paediatr Int Child Health. 2012;32(2):97–101. doi: 10.1179/2046905512Y.0000000014
  61. Hansen AK, Wisborg K, Uldbjerg N, Henriksen TB. Risk of respiratory morbidity in term infants delivered by elective caesarean section: cohort study. BMJ. 2008;336(7635):85–87. doi: 10.1136/bmj.39405.539282.BE
  62. Cyna AM, Andrew M, Emmett RS, et al. Techniques for preventing hypotension during spinal anaesthesia for caesarean section. Cochrane Database Syst Rev. 2006;(4):CD002251. doi: 10.1002/14651858.CD002251.pub2
  63. Balki M, Carvalho JC. Intraoperative nausea and vomiting during cesarean section under regional anesthesia. Int J Obstet Anesth. 2005;14(3):230–241. doi: 10.1016/j.ijoa.2004.12.004
  64. Narkevich AN, Vinogradov KA. The most common mistakes made by researchers in presenting research results. Ekologiya cheloveka (Human Ecology). 2020;27(8):55–64. doi: 10.33396/1728-0869-2020-8-55-64 EDN: URBOQG
  65. Narkevich AN, Vinogradov KA. The most common errors in medical research. Ekologiya cheloveka (Human Ecology). 2020;27(7):59–64. doi: 10.33396/1728-0869-2020-7-59-64 EDN: ITOJGP

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025

Ссылка на описание лицензии: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).