Fibroblast growth factors and their effect on cognitive functions and the course of central nervous system degenerative diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Aim of investigation. The study of characteristics of fibroblast growth factors (FGFs), as a man factor FGFd, including 22 structurally connected polypeptides, is necessary for the neuroprotection by the CNS degenerative pathology is presented playing a great role in neuroprotection, cognitive functions state. The factors FGF1, FGF2, FGF8. FGF17, FGF18, FGF20. FGF21 and their receptor (RFGF) in natural conditions plays a great role in nerve system structures preservation, in formation and preservation of long-term memory and other cognitive functions. Methods. Inroduction in old rat experiments the plasma or cerebrospinal fluid of young rats and also of recombinant FGFs. Results. The cerebrospinal fluid of young rats increased the proliferation and differentiation of oligodendrocyte cell-precursors in the hippocampus of old animals and this lead to great closing of cognitive disfunctions and reformed the leaning and memory. Conclusion. FGFs investigation create the basis for the preparation elaboration, which restore cognitive functions by aging and CNS degenerative pathology (Alzheimer and Parkinson diseases, stroke).

About the authors

Boris Ilich Kuznik

Chita State Medical Academy, Russian Federation

Author for correspondence.
Email: bi_kuznik@mail.ru
Honorable chief of cathedra of normal physiology; Doctor of medical sciences, professor. 672000, Trans-Baikal Territory, Chita, st. Gorky 39a

Ecaterina Sergeevna Guseva

Innovation Clinic Academy of Health

Email: guseva81@gmail.com
director assistance of clinic-expert and organization-methodic work; Candidate of medical sciences. Russian Federation, 672000, Chita, st. Kokhanskogo 13

Sergei Olegovich Davidov

Innovation Clinic Academy of Health

Email: davydov-so@mail.ru
chief; Doctor of medical sciences Russian Federation, 672000, Chita, st. Kokhanskogo 13

Natalia Iosifovna Chalisova

«St. Petersburg Institute of Bioregulation and Gerontology»; Institute of Physiology I.P. Pavlov Academy of Sciences

Email: ni_chalisova@mail.ru
leading researcher of Pavlov Institute of Physiology RAS. Senior researcher of the laboratory of Oncogerontology of Biogerontology department; Doctor of biologic sciences, professor. Russian Federation, 197110, St. Petersburg, Dynamo Ave., 3; Russian Federation, 199034, St. Petersburg, nab. Makarova, d. 6

References

  1. Villeda S.A., Luo J., Mosher K.I., Zou B., Britschgi M., Bieri G., Stan T.M., Fainberg N., Ding Z., Eggel A., Lucin K.M., Czirr E., Park J.S., Couillard-Despres S., Aigner L., Li G., Peskind E.R., Kaye J.A., Quinn J.F., Galasko D.R., Xie X.S., Rando T.A., Wyss-Coray T. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011; 477: 90-4.
  2. Loffredo F.S., Steinhauser M.L., Steven M., Gannon J., Pancoast J.R., Yalamanchi P., Sinha M., Dall'Osso C., Khong D., Shadrach J.L., Miller C.M., Singer B.S., Stewart A., Psychogios N., Gerszten R.E., Hartigan A.J., Kim M.J., Serwold T., Wagers A.J., Lee R.T. Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell. 2013; 153 (4): 828-39. doi: 10.1016/j.cell.2013.04.015.
  3. Iram T., Kern F., Kaur A., Myneni S., Morningstar A.R., Shin H., Garcia M.A., Yerra L., Palovics R., Yang A.C., Hahn O., Lu N., Shuken S.R., Haney M.S., Lehallier B., Iyer M., Luo J., Zetterberg H, Keller A., Zuchero J.B., Wyss-Coray T. Young CSF restores oligoden-drogenesis and memory in aged mice via Fgf17. Nature. 2022; 605 (7910): 509-15. doi: 10.1038/s41586-022-04722-0.
  4. Xiong X.Y., Semyanov A., Tang Y. Signal Restored oligodendrogenesis by fibroblast growth factor 17: molecular mechanism for rejuvenating ageing-related memory deficit. Transduct Target Ther. 2022; 7 (1): 237-43. doi: 10.1038/s41392-022-01092-x.
  5. Liu Yiqiu, Deng Junyu, Liu Ye, Li Wei, Nie Xuqiang. FGF, Mechanism of Action, Role in Parkinson's Disease. Therapeutics. 2021; 12: 675725. DOI: 10.3389fphar.2021.675725.
  6. Kim J.H., Hwang K.H., Park K.S., Kong I.D., Cha S.K. Biological role of anti-aging protein Klotho. J. Lifestyle Med. 2015; 5 (1): 1-6. doi: 10.15280/jlm.2015.5.1.1.
  7. Oomura Y., Sasaki K., Suzuki L. Tooyama I., Hanai K., Kimura H., Hori T. A single pretraining glucose injection induces memory facilitation in rodents performing various tasks: contribution of acidic fibroblast growth factor. Neuroscience. 1998; 85 (3): 785-94. doi: 10.1016/s0306-4522(97)00630-1.
  8. Pereda-Perez I., Valencia A., Baliyan S., Nunez Ä., Sanz-Garcia A., Zamora B., Rodriguez-Fernandez R., Esteban J.A., Venero C. Systemic administration of a fibroblast growth factor receptor 1 agonist rescues the cognitive deficit in aged socially isolated rats. Neurobiol Aging. 2019; 78: 155-65. doi: 10.1016/j.neurobiolaging.
  9. Gomez-Pinilla F., So V., Kesslak J.P. Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise.33 Neuroscience; 1998, 85(1):53-61. doi: 10.1016/s0306-4522(97)00576-9.
  10. Lu Y., Sareddy G.R., Wang J., Zhang Q., Tang F.L., Pratap U.P., Tekmal R.R., Vadlamudi R.K., Neuron-Derived Estrogen Is Critical for Astrocyte Activation and Neuroprotection of the Ischemic Brain. J. Neurosci. 2020; 40 (38): 7355-74. doi: 10.1523/JNEURO-SCI.0115-20.2020
  11. Even-Chen O., Barak S. The role of fibroblast growth factor 2 in drug addiction. Eur. J. Neurosci. 2019; 50 (3): 2552-61. doi: 10.1111/ejn.14133.
  12. Zechel S., Werner S., Unsicker K., von Bohlen, Halbach O. Expression and functions of fibroblast growth factor 2 (FGF-2) in hippocampal formation. Neuroscientist. 2010; 16 (4): 357-73. doi: 10.1177/1073858410371513.
  13. Cronska-Peski M., Goncalves J., Herbert J. Enriched Environment Promotes Adult Hippocampal Neurogenesis through FGFRs. Neurosci. 2021; 41 (13): 2899-910. doi: 10.1523/JNEUROSCI.
  14. Garrett L., Becker L., Rozman J., Puk O., Stoeger T, Yildirim A.Ö., Bohla A., Eickelberg O., Hans W., Prehn C., Adamski J., Klopstock T., Racz I., Zimmer A., Klingenspor M., Fuchs H., Gailus-Durner V, Wurst W., Hrabe de Angelis M., Graw J., Hölter S.M. Fgf9 Y162C Mutation Alters Information Processing and Social Memory in Mice. Mol. Neurobiol. 2018; 55 (6): 4580-95. doi: 10.1007/s12035-017-0659-3.
  15. Di Re J., Wadsworth P.A., Laezza F.Intracellular Fibroblast Growth Factor 14: Emerging Risk Factor for Brain Disorders Front. Cell Neurosci. 2017; 11: 103. doi: 10.3389/fncel.2017.00103.
  16. Lemaitre H., Mattay V.S., Sambataro F. Genetic variation in FGF20 modulates hippocampal biology. Neurosci. 2010; 30 (17): 5992-7. doi: 10.1523/JNEUROSCI.
  17. Omileke F., Ishiwata S., Matsuo J., Yoshida F., Hidese S., Hattori K., Kunugi H. Possible associations between plasma fibroblast growth factor 21 levels and cognition in bipolar disorder. Neuropsychopharmacol Rep. 2020; 40 (2): 175-81. doi: 10.1002/npr2.12102.
  18. Zhang Y., Xie Y., Berglund E.D., Coate K.C., He T.T., Katafuchi T., Xiao G., Potthoff M.J., Wei W., Wan Y., Yu R.T., Evans R.M., Kliewer S.A., Mangelsdorf D.J. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife. 2012; 1: 00065. doi: 10.7554/eLife.00065.
  19. Yu Y., Bai F., Wang W., Liu Y., Yuan Q., Qu S., Zhang T., Tian G., Li S., Li D., Ren G. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol. Biochem. Bechav. 2015; 133: 122-31. DOI: 1016/j.pbb.2015.03.020
  20. Leng Y., Wang Z., Tsai L.K., Leeds P., Fessler E.B., Wang J., Chuang D.M. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol. Psychiatry. 2015; 20 (2): 215-23. doi: 10.1038/mp.2013.192
  21. Xu J., Wu F., Li Y., Wang F., Lin W., Qian S., Li H., Fan Y., Li H.., Chen L, Xu H., Chen L., Liu Y., Li X., He J. Fibroblast growth factor 21 associating with serotonin and dopamine in the cerebrospinal fluid predicts impulsivity in healthy subjects. MC Neurosci. 2021; 22 (1): 68. doi: 10.1186/s12868-021-00676-7
  22. Yu Y., Bai F., Wang W., Liu Y., Yuan Q., Qu S., Zhang T., Tian G., Li S.., Li D., Ren G. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol. Biochem. Behav. 2015; 133. doi: 10.1016/j.pbb.2015.03.020
  23. Ren B., Wang L., Shi L., Jin X., Liu Y., Liu R.H., Yin F., Cadenas E., Dai X., Liu Z., Liu X. Methionine restriction alleviates age-associated cognitive decline via fibroblast growth factor 21. Redox Biol. 2021; 41: 101940. doi: 10.1016/j.redox.2021.101940.
  24. Sa-Nguanmoo P., Tanajak P., Kerdphoo S., Jaiwongkam T, Wang X., Liang G., Li X., Jiang C., Pratchayasakul W., Chattipakorn N., Chattipakorn S.C. FGF21 and DPP-4 inhibitor equally prevents cognitive decline in obese rats. Biomed Pharmacother. 2018; 97: 1663-72. doi: 10.1016/j.biopha.2017.12.021.
  25. Hanks L.J., Gutierrez O.M., Bamman M.M., Ashraf A., McCormick K.L., Casazza K. Circulating levels of fibroblast growth factor-21 increase with age independently of body composition indices among healthy individuals. J. Clin. Transl. Endocrinol. 2015; 2 (2): 77-82. doi: 10.1016/j.jcte.2015.02.001.
  26. Laszczyk A.M., Nettles D., Pollock T.A., Fox S., Garcia M.L., Wang J., Quarles L.D., King G.D. FGF-23 Deficiency Impairs Hippocampal-Dependent Cognitive Function. eNeuro. 2019; 22; 6 (2): 0469. doi: 10.1523/ENEURO.0469-18.2019.
  27. Drew D.A., Tighiouart H., Scott T.M., Lou K.V, Fan L., Shaffi K., Weiner D.E., Sarnak MJ. FGF-23 and cognitive performance in hemodialysis patients. Hemodial Int. 2014; 18 (1): 78-86. doi: 10.1111/hdi.12100.
  28. Li H., Cao Z., Xu J. Cerebrospinal fluid FGF23 levels correlate with a measure of impulsivity Psychiatry Res. 2018; 264: 394-97. doi: 10.1016/j.psychres.2018.04.032.
  29. Haffner D., Leifheit-Nestler M. Extrarenal effects of FGF23. Pediatr Nephrol. 2017; 32 (5): 753-65. doi: 10.1007/s00467-016-3505-3.
  30. Gonzalez-Reimers E., Romero-Acevedo L., Espelosin-Ortega E., Martin-Gonzalez M.C., Quintero-Platt G., Abreu-Gonzalez P, Jose de-la-Vega-Prieto M., Martinez-Martinez D, Santolaria-Fernandez F. Soluble Klotho and Brain Atrophy in Alcoholism. Alcohol. 2018; 1; 53 (5): 503-10. doi: 10.1093/alcalc/agy037.
  31. Alam R., Mrad Y., Hammoud H., Saker Z., Fares Y., Estephan E., Bahmad H.F., Harati H., Nabha S. New insights into the role of fibroblast growth factors in Alzheimer's disease. Mol. Biol. Rep. 2022; 49 (2): 1413-27. doi: 10.1007/s11033-021-06890-0.
  32. Stopa E.G., Gonzalez A.M., Chorsky R., Corona R.J, Alvarez J., Bird E.D., Baird A. Basic fibroblast growth factor in Alzheimer's disease. Biochem. Biophys. Res.Commun. 1990; 171 (2): 690-6. doi: 10.1016/0006-291x(90)91201-3.
  33. Di Re J., Wadsworth P.A., Laezza F.Intracellular Fibroblast Growth Factor 14: Emerging Risk Factor for Brain Disorders. Front Cell Neurosci. 2017; 11: 103. doi: 10.3389/fn-cel.2017.00103.
  34. Conte M., Sabbatinelli J., Chiariello A., Martucci M., Santoro A., Monti D., Arcaro M., Galimberti D., Scarpini E., Bonfigli A.R., Giuliani A., Olivieri F., Franceschi C., Salvioli S. Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer's disease in comparison with healthy aging. Geroscience. 2021; 43 (2): 985-1001. doi: 10.1007/s11357-020-00287-w.
  35. Kakoty V., K.C.S., Tang R.D., Yang C.H., Dubey S.K., Taliyan R. Fibroblast growth factor 21 and autophagy: A complex interplay in Parkinson disease. Biomed Pharmacother. 2020; 127: 110145. doi: 10.1016/j.biopha.2020.11014537.
  36. McGrath E.R., Himali J.J., Levy D., Conner S.C., Pase M.P., Abraham C.R., Courchesne P., Satizabal C.L., Vasan R.S., Beiser A.S., Seshadri S. Circulating fibroblast growth factor 23 levels and incident dementia: The Framingham heart study. PLoS One. 2019; 14 (3): e0213321. doi: 10.1371/journal.pone.0213321
  37. Jinfeng L., Yunliang W., Xinshan L., Shanshan W., Chunyang X., Peng X, Xiaopeng Y., Zhixiu X., Honglei Y., Xia C., Haifeng D., Bingzhen C. The Effect of MSCs Derived from the Human Umbilical Cord Transduced by Fibroblast Growth Factor-20 on Parkinson's Disease. Stem Cell Int. 2016; 5016768. doi: 10.1155/2016/5016768.
  38. Fletcher E.J.R., Jamieson A.D., Williams G. Targeted Repositioning Identifies Drugs that Increase Fibroblast Growth Factor 20 Production and Protect against 6-Hydroxy-dopamine-Induced Nigral Cell Loss in Rats. Sci. Report. 2019; 9 (1): 8336. doi: 10.1038/s41598-019-44803-1.
  39. Hsuchou H., Pan W., Kastin A. J. The fasting polypeptide FGF21 can enter brain from blood. Peptides. 2007; 28 (12): 2382-6. doi: 10.1016/j.peptides.2007.10.007
  40. Yang C., Wang W., Deng P., Li C., Zhao L., Gao H. Front Fibroblast Growth Factor 21 Modulates Microglial Polarization That Attenuates Neurodegeneration in Mice and Cellular Models of Parkinson's Disease. Aging Neurosci. 2021; 13: 778527. doi: 10.3389/fnagi. 2021.
  41. Celik Y., Resitoglu B., Komur M., Polat A., Erdogan S, Alakaya M., Beydagi H. F. Fibroblast growth factor 2 improves cognitive function in neonatal rats with hypoxic ischaemic brain injury Med Assoc. 2016; 66 (5): 549-53.PMID: 27183934
  42. Çelik Y., Atici A., Beydaği H., Reşitoğlu B., Yilmaz N., Ün İ., Polat A., Bağdatoğlu C., Dağtekin A., Sungur M.A., Tiftik N. The effects of fibroblast growth factor-2 and pluripotent astrocytic stem cells on cognitive function in a rat model of neonatal hypoxic-ischemic brain injury Matern. Fetal Neonatal Med. 2016; 29 (13): 2199-204. doi: 10.3109/14767058.2015.1080683
  43. Li A., Tian J., Yang J., Zhou Z., Zhou W. Expression of fibroblast growth factor 9 and its receptors in the dentate gyrus of hippocampus in poststroke depression rats. Neuroreport. 2021; 32 (4): 321-25. doi: 10.1097/WNR.0000000000001591.
  44. Li Y., Lin M., Lin P., Xia N., Li X., Lin L., Yang Y. Maternal High-Fat Diet Alters the Characteristics of Astrocytes and Worsens the Outcome of Stroke in Rat Offspring, Which Improves After FGF21 Administration. Front Cell Dev. Biol. 2022; 9: 731698. doi: 10.3389/fcell.2021.731698.
  45. Dordoe C., Chen K., Huang W., Chen J., Hu J., Wang X., Lin L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front Pharmacol. 2021; 12: 671131. doi: 10.3389/fphar.2021.671131.
  46. Ellsworth J.L., Garcia R., Yu J., Kindy M.S. Fibroblast growth factor-18 reduced infarct volumes and behavioral deficits after transient occlusion of the middle cerebral artery in rats. Stroke. 2003; 34 (6): 1507-12. doi: 10.1161/01.STR.0000071760.66720.5F
  47. Mamtilahun M., Jiang L., Song Y., Shi X., Liu C., Jiang Y., Deng L., Zheng H., Shen H., Li Y., Zhang Z., Wang Y., Tang Y., Yang G.Y. Plasma from healthy donors protects blood-brain barrier integrity via FGF21 and improves the recovery in a mouse model of cerebral ischaemia. Stroke Vasc Neurol. 2021; 6 (4): 561-71. doi: 10.1136/svn-2020-000774.
  48. Jiang Y., Han J., Li Y., Wu Y., Liu N., Shi S.X., Lin L., Yuan J., Wang S., Ning M.M., Dumont A.S., Wang X. Delayed rFGF21 Administration Improves Cerebrovascular Remodeling and White Matter Repair After Focal Stroke in Diabetic Mice. Stroke Res. 2022; 13 (2): 311-25. doi: 10.1007/s12975-021-00941-1.
  49. Acquaviva J., Abdelhady H.G., Razzaque M.S. Phosphate Dysregulation and Neurocognitive Sequelae. Adv. Exp. Med. Biol. 2022; 1362: 151-60. doi: 10.1007/978-3-030-91623-7_13.
  50. Кузник Б.И., Хавинсон В.Х., Линькова H.С., Рыжак Г.А., Саль Т.С., Трофимова С.В. Факторы роста фибробластов fgf19, fgf21, fgf23 как эндокринные регуляторы физиологических функций и геропротекторы. Эпигенетические механизмы регуляции.Успехисовременной биологии. 2017; 137 (1): 84-99.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Classification of fibroblast growth factors [5]

Download (204KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».