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Abstract - The article is devoted to the analysis of electrodynamic properties elliptical frame structure. Taking into account
double symmetry internal problem of electrodynamics for the structure under consideration in the framework of the thin-wire
approximation is reduced to four integral Fredholm equations of the first kind, written with respect to independent current
functions. A study of spectral characteristics of the integral operators of the corresponding integral equations for various values
of the electrical length and ellipticity of the frame. It is shown that the eigenfunctions of integral operators for close values
of these parameters have a high degree of correlation, with In this case, the eigenfunctions are close in form to trigonometric
functions. Features of the frequency dependence of the eigenvalues integral operators. The conclusion is made about the resonant
nature of these dependences, what makes an elliptical frame structure in many respects similar to the previously considered
tubular vibrator and spherical spiral particle. The results presented in the article form an in-depth understanding of the processes
occurring in the structure under consideration, and also serve as a guideline in the construction of approximation models for

solving the internal tasks.
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Introduction

Loop antennas are one of the most common types
of antennas, and they have several applications (tel-
evision, cellular communications, radio communi-
cations, etc.). Theoretical research on loop antennas
has been conducted for quite a long time; hence, a
rather large number of scientific works on this sub-
ject now exist. At present, the characteristics of such
structures can be calculated with a high degree of
accuracy using computer-aided design systems, en-
gineering equations, and developed models of other
works that have varying degrees of complexity. In [1],
a loop antenna is examined in the approximation of
the uniform current distribution. In [2], the long-line
theory is applied for the calculations. In [3; 4], in the
cross section of a conductor with small wave sizes, a
quasistatic approximation is introduced for the cur-
rent distribution. In [5], a ring stripline antenna is
considered, for which an infinite set of integral equa-
tion systems (IESs) are developed with respect to the
Fourier harmonics of the components of the surface
current density vector on the strip. The obtained re-
sults allow estimation of the relationship between the
amplitudes of the longitudinal and transverse current
components.

It is worthy to note that rigorous mathemati-
cal models have been designed mostly only for ring
frames with the simplest geometry. The axial symme-

illuminator84@yandex.ru (Dmitry P. Tabakov)

try of the structure present in this case significantly
simplifies the solution of the interior problem. Rig-
orous models of frames of more complex configura-
tions (e.g., elliptical, polygonal) are not so common,;
therefore, developing such mathematical models is
urgently needed. Even for rigorous models developed
in the form of IE (including singular ones), authors, as
a rule, limit themselves to the analysis of the quanti-
tative characteristics of current distributions without
investigating the reasons that result in the formation
of these distributions. This aspect is critical to pro-
ducing an adequate pattern of the interior physical
processes in the structures being considered. This
problem can be solved using the eigenfunction meth-
od (EFM) developed in [6]. Previously, this method
was applied by the authors to the analysis and con-
struction of an approximation of the interior prob-
lem solution for a tubular electric dipole [7; 8]. An al-
ternative to EFM is the characteristic mode method
[9-11]. Its advantages over EFM are the simplicity of
the numerical implementation; however, a significant
disadvantage of this method is the low stability of the
computational procedure.

We discuss a mathematical model of an elliptical
frame (EF) structure expressed in the form of four in-
dependent IEs. The solution to the interior electrody-
namic problem is developed on the basis of EFM. The
method of EF excitation was not specified to increase
the generality of the presented results, i.e., the devel-
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oped model can be employed to solve both antenna
and diffraction problems. In a given frequency range
for different variants of the EF geometry, the spectral
characteristics of the integral operators of the corre-
sponding IEs were analyzed.

1. Statement of the problem

Consider solving the interior problem of electro-
dynamics on an EF structure using the eigenfunction
method. The geometry of the structure is shown in
Fig. 1. An EF conductor, which has infinitely high
conductivity, has a circular cross section with a diam-
eter 2g, which is much less than the wavelength A and
the total length L of the conductor generatrix. There-
fore, for EF, it is desirable to utilize the thin-wire
approximation, within which the volumetric current
density is decreased to the azimuthally independent
total current flowing along the conductor generatrix.
Hereafter, the symbol L denotes a generatrix.

The parametric equation of the EF generatrix L has
the form

r(t) =r, costk+r,sinty, te[0;2n]. (1)

Here, t is the azimuth of a cylindrical or spherical co-

ordinate system and r, and r, are the major and mi-

X
nor semiaxes of the ellipse, respectively. The natural

parameter on the spirals is calculated using
t ¢

l(t) = I dr t) dt' = Ty J‘\Isinzt'-i- Kcoszt’dfr, (2)
0 0

Here, k= n /1, <1 is the ellipticity coefficient. In the

natural parameter, the equation of the generatrix of
the spiral is obtained using Eq. (1) after t=¢(l). The
function t(l) is determined numerically from Eq. (2)
by the inverse interpolation method. The length of the

EF generatrix is described as L=1(2n) = 4rXE(\/1—K2 )
where E(x) is a complete elliptic integral of the sec-
ond kind [12]. The radius of curvature p_. of the EF
generatrix L has a minimum value at points that cor-
respond to t=0 and t=m p_; =rx. This equality
needs the imposition of an additional condition on
the radius of the conductor & < r, k.

Within the adopted model, the EFM structure
is described by an integral representation (IR), de-
scribed in detail in [13]:

j I r())dl,

Here, K are kernels of the integral representation,

F=E H; 3)

I(l) is the total current distribution on the generatrix
of the conductor, and r is the radius vector of the ob-
servation point. The correctness and reliability of the

Fig. 1. Thin-wire model of an elliptic frame antenna
Puc. 1. TOHKONIPOBOIOYHASL MOfENb SJUIMITHYECKOM PaMOYHON
AHTEHHBI

results obtained using EFM IR of Eq. (4) are verified
in [14; 15].

The structure under consideration with k<1 has
double mirror symmetry relative to the planes XOZ
and YOZ; therefore, it can be divided into four identi-
cal parts, which generatrices L, =L', and described
by general equations

_ X I ) PRSP
r,(t)=s,"r costx+s) r,sinty,
tel0;n/2], n=1...4.
5,551 = 1,15

550 s =11,-1;

s sy =115

155 59" = 1-1,-1;

In this case,
- ne (F)
= 2], 10K
n

F=E,H;

r,x, (1)dl, (4)

n=1...4.

Here, I (I) is the current distribution of the corre-
sponding generatrix. Let us set the following bound-
ary condition

(B (e(1)) + E(e() - 1) = 0

on each generatrix, and thus, the following IE system
is obtained

ZII

LLDdl'=E, (D),

m=1...4, lelL'=L/4.
Here,
E ()=-1_0)-E™(x (1), (5)

Koy W1 =1, 0- KB (e (0,1, ()

’'n
are the tangential components of the external electric
field on the generatrices and kernels of the IE system,
respectively. Due to the symmetry of the structure,
we obtain the following equations:

Kpm =Ky Kps =Ky m=1..4

Kip=Ky1=K34=Ky3=Ky;
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K1,3 = K3,1 = K2,4 = K4,2 =Kj3.

For functions E,_, I, and K, , the following

m bl
transformations are valid:

4
1 .
E, :Ezwm,nFn’ 6)
n=1

4
o1
Fm:EZwm‘nFn, F=E,LK,

n=1

where Wi, are the elements of the Walsh matrix:
1 1 1 1
o 1 1 -1 -1
11 -1 11
1 -1 1 -1

Regarding functions E, and I, the original IE
system is divided into four independent subsystems:

Em(l):J.L,im(l’)(zkm(l,l'))dl’, m=1..4, lel. (7

Physically, the planes XOZ and YOZ are an electric
or magnetic wall for the structure being considered;
thus, the following boundary conditions are valid for
the functions I; and their derivatives I';:

I[10)=11(L)=0; 1,0)=1,(L)=0; (8)
I'50)=1I4(L")=0; 1,00)=1,(L)=0.

We approximate the generatrices L; by kinked
curves L(iN), having N segments of equal length A.
Within the method of moments, we employ constant
functions within the segment as basis functions and
delta functions localized at the center of the segment
as test functions. As a consequence, four independent

SLAEs are obtained with the general form:
Z1=E. )

where Z=27" are moment matrices with elements

m) - 1=1M are vectors of complex amplitudes of

iLj
currents It™ (m)

V4

are vectors

;m) at the

on segments, and E=E
with the values of external field functions E
centers of segments

L. +A/2
4V =2 [ KM@,

I -Al2
(m) _ * (m) _ ).
1™ =1. (1), E™=E, (@)

Here, l; =(l,, +1L)/2 are the values of the natural
parameter at the centers of the segments, [; are the
values of the natural parameter at the boundaries
of the segments, and the superscript “N” in the ker-
nels K, refers to that in K, ., described by the sec-
ond equation of Eq. (5), and rather than the original

generatrices r, (l), their linearized approximations
rr(nN)(l). are applied. Furthermore, if there is no need,
the index m for the matrices and vectors is omitted.

The complete eigenvalue problem (EVP) for a ma-
trix Z is expressed as follows:
7j=X]J. (10)

In this equation, J is a matrix in which columns
J; are eigenvectors (EVs) of Z, while all EVs have
unit norm |J, |=1; Xis a diagonal matrix in which
diagonal elements &;; =& € X are eigenvalues of Z.
Here, it should be n(’)ted that the SLAE of Eq. (9) is
equivalent to the IE of Eq. (7) with a degenerate ker-
nel, calculated for segmented generatrices, and the
EVs J, approximate the eigenfunctions (EFs) J, (I) of
the integral operator of the problem of Eq. (7). Solving
the complete eigenvalue problem for complex matri-
ces is a standard linear algebra problem that is solved
using the QR algorithm [16]. The SLAE solution with
known J and X will have the following form:
1=(JX"JTE.

The index “T” is the transpose operation. The ma-
trix X is diagonal; therefore, calculating the inverse
matrix is not much of a problem. Physically, the study
of the dependence of EV and EVP on frequency and
structure parameters is of particular interest because
they largely determine the nature of the interior
problem solution. In addition, these studies are the
basis for constructing approximation models of solu-
tions [8].

In our case, the length of the EF generatrix L should
be selected as the main parameter normalized to the
wavelength x=L/A. We will use the ellipticity coef-
ficient k as parameter 2. The normalized parameter 3
is the ratio of the wire radius ¢ to the length of the
EF generatrix L. Due to the conditions listed earlier,
it does not have a significant effect on the solution
interior problem. Therefore, we assume ¢/ L = const.

It should also be noted here that with k=1 EF, it
has axial symmetry, and the eigenfunctions of the
integral operator can be expressed through a pair of
corresponding trigonometric functions. In this case,
the form of the eigenfunctions does not depend on
L/

2. Numerical modeling and
analysis of the results

The problem of Eq. (10) was solved in a rectangular
area:

Sixex X Xmaxh KeEKAK sk
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At intervals x and x, N¢ nodes Xf and N, nodes
k, were introduced uniformly, respectively, form-
k. }€S. In the cal-
culations, it was assumed that x_, =0,01, x_. =5,
Kmin = 0,5, Kpay =1, Ny =500, N, =11.

The number of segments N during linearization of

ing in pairs a set of points {xf,

max

the generatrix was assumed to be 100, and the ratio
e/L" was selected to be equal to 3/250 to give the
condition 2g < A <12g [17] necessary to provide a sta-
ble solution of the SLAE within the selected system
of projection functions. In this case, p,; /L with
k=0,5 is approximately 0,4, which corresponds to
the previously stated condition e < p_ ;.-

Calculation of EVP X and EV J was conducted us-
ing the ZGEEV procedure [18], which is included in
the open source library LAPACK [19]. An important
aspect when performing range calculations in region
S is tracking the numbers of EV and EVP [20; 21],
since for different values of x and «, the ZGEEV pro-
cedure places EV and EVP in the returned arrays in
different manners. Thus, the direct calculation of EV
and EVP in practice must be supplemented with an
algorithm for tracking and sorting them as well as an
algorithm for correcting the sign of EV. A correlation
algorithm was employed to obtain the results of this
study. It was also previously used in [6], but unfortu-
nately, it was not described in detail because of the
limited scope of the article. In this article, we will fill
this gap.

Let j(Xf*,Kr*A) be the EV matrix, which we take as
a sample, and J(Xf,Kr) be a matrix that needs to be
sorted by EV and adjusted from signs. The essential
aspect here is the following conditions:

2|Xf_Xf*|/|Xf+Xf*|<<1; (11)

2 —K « |/ +K |1,
|Kf Kf||l<f Kf|

that is, calculations must be conducted for matrices
located in close points of region S, which guarantees
a high degree of EV correlation. For distant points,
EVs with the same indices may have a low degree of
correlation and a very different shape. To correct the
numbers and signs of EV, it is necessary to compute
the correlation matrix:

s am .
K :J (Xf*’Kr*)J<Xf’KT’)'

Next, each line K is normalized to the element of
the corresponding line with the maximum absolute
value. After this step, each line K will contain one
element k; i with a value of 1 or -1, and the values

of the remaining elements under the condition of
Eq. (11) will be significantly less than 1 in absolute

value. The column with the index i of the adjusted

A

matrix J(Xf,Kr) will correspond to the j-th column

A

of the original matrix J(Xf,l(r ), multiplied by a scalar
kij
is also employed to adjust the numbers of the EVP

(sign correction). The position of the element kij

vector X(Xf,Kr) (without adjusting the sign). Here,
i is the position in the adjusted EVP vector, and j is
the position in the original EVP vector. After correc-
tion, the matrix j(Xf,Kr) can be taken as reference
(xf = Xprs K o> K,x) Aand the procedure can be re-
peated for the matrix J, calculated at a new point in
region S that meets the condition of Eq. (11).

In our case, the matrix j(Xl,K]). was taken as ref-
erence. At stage 1, matrices j(X],Kr) and vectors
X(x;,k,) were corrected for r=2...N,. At stage 2,
the corrected matrices were employed to correct ma-
trices j(Xf,Kr) and vectors X(Xf,Kr) for the corre-
sponding index r (r= 2---Nf)~

Numerical calculations have two aims. The first
aim, which has predominantly practical significance,
is associated with determining the possibilities of
constructing an approximation model for solving an
interior problem based on the EFM. To realize this
goal, it becomes necessary to solve some tasks. Task 1
includes the analysis of the degree of correlation of
EV calculated at various points in region S. This in-
formation is crucial to determine the possibility of
constructing an approximation of the EV matrices in
the specified area. Task 2 is associated with the anal-
ysis of EF forms ] (I), determined by the result of
interpolation of the corresponding columns of matri-
ces J, with collocation points l;, with i=1...N act-
ing as interpolation nodes. Based on the findings of
this analysis, it is possible to determine the systems
of functions that are most suitable for approximating
eigenfunctions in the form of corresponding series.
Task 3 is associated with the analysis of the EVP be-
havior in region S. This analysis, as in the case of the
EV, allows determination of the systems of functions
that are most applicable for approximating the EVP
for various points of S.

The second aim is mainly of theoretical signifi-
cance and is associated with determining the nature
of the frequency dependence of EVP. Earlier in [6; 7],
for other structures, it has already been revealed that
this dependence has a resonant nature; therefore, the
main contribution to the formation of a solution to
the interior problem is made by only a small part of
EF. In this case, we need confirmation of this fact
with some additional details for the structure being
considered. To estimate the residual between vector



Tabakov D.P., Mayorov A.G. Spectral characteristics of the integral operator ...
62 Tab6axkos [I.I1., Matiopos A.I. CieKTpasibHble XapaKTePUCTHKU UHTETPAIBHOTO OMEePaToOpa ...

2.4 T T T T

T
—F—
— e
—

E— |
0.95

065 07 075 08

a

085 09

—0.4

-0.6 4

_|2 -
71‘6 -
p
-18 l ! ! \ | | l
055 06 065 07 075 08 085 09 095
b

Fig. 2. Dependence p, on K:; a- x=0,01; b- x=5, the number of the curve corresponds to the number of SLE

Puc. 2. 3aBucumoctb p, oT K:; a- x=0,01; 6 - x=5, HOMep KpUBOI cooTBeTCTBYyeT HOMepy CITAY

Fig. 3. dependence Py on x}; a- k=0,95 b- k=0,5 the number of the curve corresponds to the number of SLE
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or matrix arrays V calculated at a pair of points in
region S, we use the general equation

V(X k)= V(x,x)|
V(X & )+ V(x,K)]|

l‘eS(V;X*,K*;X,K) =lg| 2

Figure 2 illustrates the graphs of values p, =
=res(J; x, K, 15X %,) for case x=0,01 (a) and case
x=5 (b). The value K: = (K, .4 +%,)/2. is plotted
along the abscissa axis. It can be observed that the
residual values for different m differ markedly, while
the residual increases with decreasing k and increas-
ing x. However, generally, for a rather small value of
N,, the results can be considered quite good. The re-
sidual can be reduced by decreasing the distance be-
min* max’ this
will not be sufficient. This also requires an increase
in N,.

Figure 3 exhibits the graphs of values

tween nodes near K At x located near x

p, =
:res(J;fo,K;xf,K) for case k¥=0,95 (a) and case

k=0,5 (b). The value x} = (fo +Xf>/2 is plotted
along the abscissa axis. Here, it can be observed that
the values of the residual are significantly smaller
than in the previously considered case, but its spread
is also significantly higher, reaching its minimum

value at x=x_;  and its maximumat x=x_, . To re-

n
duce the spread of the residual, one should use an un-
even arrangement of nodes Xp the distance between
which should decrease with increasing x. Generally,
it should be mentioned that determining the location
of control points for a given residual value is an in-
dependent and quite interesting computational prob-
lem that has application significance.

Figure 4 shows the graphs of values p, =
= res(]n;fo,K; xf,K), detailing the residual on x for
different EV numbers n at the corner points of region
S. The SV number is plotted along the abscissa axis.
It is clear that the largest contribution to the previ-

ously considered residual values is made by EVs with
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small n, which is a good guideline when constructing
EV approximations in region S.

Figure 5 shows the graphs of the real and imagi-
nary parts of the first four eigenfunctions calculated
at x=5, k=0,5. It can be observed that they corre-
spond to the conditions of Eq. (8). It is clear that EF
can be approximated by rapidly converging series of
trigonometric functions. It can also be noted that for
k=1, the function J;(I) has a uniform distribution,
and for x=0,5, the uniformity is violated, and its
maximum shifts to a point with a smaller radius of
curvature.

The ratio of the intensities of the real and imagi-
nary parts of the eigenfunctions can be estimated by
the magnitude C,(x)=|ImJ, (x)|/|ReJ,(x)|, and the
graphs are shown in Fig. 6. In all cases, a general ten-
dency is observed that at small values of x, the inten-
sity of the imaginary part of the eigen functions is
small; therefore, the oscillations of the EF point oc-
cur almost in-phase. As x increases, the intensity of
the real and imaginary parts becomes commensurate,
which results in a violation of the in-phase oscilla-

tions. In addition, at large values of x, there are points
at which the intensity of the EF imaginary part is tens
of times greater than that of the real part.

Figure 7 shows the graphs of the values
v, (x)=1g|& (0], vi(x)=argg,(x)
at k=0,5. The figure verifies the resonant nature
of the behavior of the eigenvalues, while the reso-
nance points can be determined from the condition

n

v/'(x)=0. For m=1,4, medium frequency resonances
are registered in the vicinity of even values of x, while
for different m, the same resonances correspond to
EVs, whose indices differ by one. It should separately
be noted the nonresonant maximum V) in the vicin-
ity of x=0 for m=1. Also, it is clear that the qual-
ity factor of the resonances at m=1 is slightly higher
than that at m =4 because k <1.

An important aspect in the analysis was consid-
ering the symmetry, since in the structure under
consideration a degeneracy effect is noted, which
consists of the coincidence of resonance points for
the EVP of matrices of various SLAEs. This effect is
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noted for m=2,3. Meanwhile, it is clear that the cor-
responding resonances at m =3 have a higher quality
factor because k<1.

Generally, we can conclude that the structure un-
der study in terms of the behavior of eigenvalues and
the shape of eigenfunctions is in many ways similar
to the previously considered tubular dipole [7; 8] and
a spherical spiral particle [6]. Thus, the previously

proposed strategies regarding the construction of an
approximation model to solve the interior electrody-
namic problem are fully applicable to the structure
under consideration.

Conclusion

This study considers a variant of a mathematical
model to solve an interior electrodynamic problem for
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an elliptical spiral structure constructed by thin-wire
approximation. The structure has double mirror sym-
metry, which allows the generation of a mathematical
model in the form of four independent Fredholm IEs
of the first kind, written relative to the corresponding
current functions that meet the boundary conditions
for the electric or magnetic wall at the points of in-
tersection of the generatrix of the structure with the
symmetry planes. Within the method of moments,
the reulting IEs were reduced to SLAEs relative to
the values of the current functions on the segments
of the linearized generatrix. Solutions of the SLAE
are expressed in terms of the eigenvectors and eigen-
values of the SLAE matrix. The eigenvectors of the
SLAE approximate the eigenfunctions of the inte-
gral operator of the corresponding IE. For each IE,
the behavior of the eigenfunctions and eigenvalues of
the integral operator was examined depending on the
electrical length of the generatrix of the structure and
the ellipticity coefficient at a fixed electrically small
radius of the conductor.

An estimate of the residual between the eigenfunc-
tions calculated for different values of the specified

parameters is given. It is shown that the discrepancy
increases with increasing electrical length of the gen-
eratrix of the structure and with decreasing ellipticity
coefficient; however, at the selected step of changing
the parameters, it has rather small values. A more de-
tailed analysis allowed us to conclude that the most
significant contribution to the value of the residual is
made by the eigenfunctions of the lower types. This
information forms the primary guideline when con-
structing an approximation model to solve the inte-
rior problem of the structure under consideration.

Analysis of the forms of eigenfunctions showed
their closeness to trigonometric functions. There-
fore, they can be approximated by the corresponding
series, which in this case exhibit rapid convergence.
Inthe limiting case, when the ellipse degenerates
into a circle, each eigenfunction can be analytical-
ly precisely determined by a pair of trigonometric
functions.

An analysis of the dependence of the eigenvalues
on the electrical length of the generatrix confirmed
their resonant nature. Thus, the structure considered
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from this viewpoint is in many ways similar to the
electric dipole and spherical spiral particles previ-
ously considered by the authors. That is, it can be
argued that a rather limited set of eigenfunctions
makes a significant contribution to the solution of
the interior problem. It is also worth mentioning here
that considering the symmetry of the structure sig-
nificantly simplifies the numerical analysis when the
degeneracy effect occurs, when one eigenvalue can
correspond to more than one eigenfunction, which is
noted in this case with values of the ellipticity coeffi-
cient tending to unity. At lower values of the elliptic-
ity coefficient, only the effect of the degeneration of

resonant frequencies is noted.

This work has both theoretical and practical sig-
nificance. The theoretical significance is related to
the development of methods for the electrodynamic
analysis of frame emitting and re-emitting struc-
tures. The proposed approach offers an in-depth un-
derstanding of the behavior of the structures under
consideration from the viewpoint of electrodynam-
ics and significantly simplifies the interpretation of
the obtained numerical results compared with direct
solving of integral equations and their systems. The
applied significance is related ot the fact that the
obtained results can serve as good reference in con-
structing approximation models to solve the interior
problem for the structure under consideration, as
well as for structures with similar geometry.
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Annomayus — CTaTbsl OCBSLIEHA AHAIU3Y 2JIEKTPOAMHAMUIECKHUX CBOMCTB SJIMIITUIECKON PAMOYHOM CTPYKTYpBI. C y4eToM
[ABOMHON CHMMETPHH BHYTPEHHss 3afada [Uls PacCMaTPUBAEMOW CTPYKTYpbl B PaMKax TOHKONPOBOIOYHOIO MPUGIHKEHHs
CBeleHa K YeTBIPEM WHTErPaIbHBIM ypaBHeHHsM (DpefronbMa MepBOrO POAa, 3alMHCAHHBIM OTHOCHTEIBHO HE3aBUCHMBIX
TOKOBBIX QyHKLHMH. [IpOBEleHO MCCIIeOBAHME CIIEKTPAIbHBIX XapaKTePUCTHK WHTErPaJbHBIX ONEPATOPOB COOTBETCTBYIOLIUX
WUHTErpalbHbIX yYPABHEHWH M/l PA3JHYHBIX 3HAYEHHM 3JIEKTPUYECKOH MANMHBI U KO3PULUEHTA BUIMITHYHOCTH DPAMKH.
TokasaHo, YTO COGCTBEHHble (YHKILMU HHTETPANBHBIX ONEPATOPOB NPH GIM3KHUX 3HAYEHUSIX YKA3aHHBIX [APAMETPOB HMMEIT
BBICOKYIO CTelleHb KOPPEJSILUK U 10 $popMe GIU3KH K TPUTOHOMETPUUECKUM QYHKUMAM. BbisiBIeHBI 0COGEHHOCTH YaCTOTHOM
3aBHCHMOCTH COGCTBEHHBIX 3HAYEHU I HHTErPaJIbHbIX 0MlepaTopoB. CHe/IaH BBIBOJ O PE30HAHCHOM XapaKTepe 3THX 3aBUCHMOCTEH,
9TO [eslaeT JIUIUNTHYECKYI PAMOYHYI CTPYKTypy BO MHOIOM CXOXeH C pPacCMOTPEHHBIMH aBTOPAMU paHee TPYyOUATHIM
BUGPATOPOM U cdepruvecKON CIHUPaIbHOM YacTULEN. Pe3ynbTarhl, peCcTaBlieHHble B CTaThe, CIOCOGCTBYIOT (pOPMHUPOBAHUIO
yIUIy6JIeHHOTO TOHMMAaHHsl MPOLECCOB, MPOTEKAIIUX B PacCMaTPUBAEMOM CTPYKType, a TakKe CIyXaT OPHEHTHPOM IpH
[OCTPOEHHUH ANIPOKCHMALMOHHBIX MOJeIeN pelleHUs] BHYTPEeHHEH 3aiaun.

Kniouesble cnosa - OJUIMIITHYECKass paMO4YHas CTPYKTypa; paMO4YHas aHTeHHa; WHTerpajbHOE IPe[CTaBIeHHe
3JIEKTPOMATHUTHOTO TOJIsI; PACIIpefieSieHHe TOKa; HHTErpalbHOe ypaBHEHHE; COGCTBeHHbIe GpYHKIMU; COGCTBEHHbIE 3HAYEHMUSI.
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