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Introduction

Quadrature modulation (QAM) is widely used in
standards of local area networks broadband access
(LAN) IEEE 802.11, distributed under the commercial
brand Wi-Fi [1-4]. The peculiarity of this type of mod-
ulation lies in the independent coding of the in-phase
and quadrature channels by manipulating pulses, with
their subsequent combination into a single signal
structure [5-8].As a rule, the bit length of the M code
selection for M-QAM signals is determined by the level
of channel noise and reaches the value M = 32768 in
ADSL modems [9].

The theory of formation and processing of signals of
quadrature modulation is deeply developed and its
methods are actively used in various areas of radio
engineering and telecommunications [10-13].

At the same time, research continues in the field of
synthesis of new signal structures formed by the
quadrature method. And for the theoretical study of
this direction, more general expressions are needed
that allow one to evaluate their noise immunity based
only on energy differences in relation to known signal
structures [14, 15]. This will make it possible to de-
termine the prospects of their application even at the
stage of theoretical study.

Within the framework of this problem, this article
presents an approach to justifying an empirical ex-
pression that allows estimating the probability of a bit
error in a channel depending on the noise level by in-
troducing a correction factor that takes into account
the energy characteristics of the signal structure
formed by quadrature synthesis.

Introduction to Quadrature Modulation

At its core, quadrature modulation is a symbiosis of
amplitude manipulation in each of the channels, with a
quadrature shift (the phase difference between the
channels is m/2) between the channels [16]. This al-
lows the resulting signal construction to be represent-
ed in the following form [17]:

s(t) = 1(t)cos(2mfyt) + Q(t)cos (21Tf0t + g), (D

where fo is the carrier frequency, and I(t) and Q(t) are
manipulating information sequences.

In accordance with formula (1), the signals I(t) and
Q(t) are formed from the original information bit se-
quence um(t) by appropriate structuring (here m is the
ordinal number of the information bit). As a result odd
pulses uzm-1(t) manipulate the in-phase component,
and even pulses uzm(t) manipulate the quadrature one
[17,18].

On Fig. 1 shows a typical quadrature modulator for
synthesizing 4-QAM signals.
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Fig. 1. Structure of a Standard 4-QAM Quadrature Signal
Modulator

It should be noted that when dividing the infor-
mation manipulating sequence um(t) into an in-phase
one, containing only odd pulses uzm-1(t), and a quadra-
ture one, containing only even components uzm(t), the
length of the pulses in these sequences doubles [19].

Quite often, the signals I(t) and Q(t) are directly as-
sociated with the manipulating sequence um(t), which
is not entirely true.

According to the structure of the modulator (see
Fig. 1), the signal s(t) must be high-frequency. But
such an implementation is difficult for practical use, so
the signals I(t) and Q(t) supplied to the multipliers
already initially represent low-frequency keyed oscil-
lations:

L,(t) = a,,coS[Qppm — 1Uppm —1(t — 2m — DT)];
{Qn(t) = bySin[Qyy Uy (t — 2mT)],

where a» and bn are the amplitude values of the ma-
nipulation pulses; Q is the full phase of the forming
initial low-frequency oscillation; T is a clock interval,
by means of which the manipulation speed is set.

(2)

In expression (2), the subscript n is introduced for
clarity of the procedure for structuring the flows I(t)
and Q(t), since the manipulating pulses are divided in
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the quadrature and in-phase channels into even and
odd sequences.

The convenience of square modulation is deter-
mined not only at the stage of signal synthesis, but also
at the stage of their processing in a coherent demodu-
lator [18]. Thus, the resulting signal at the reception
will be an additive mixture of the useful component
s(t) and channel noise n(t) [20]:

z(t) = s(t) + n(t), (3)
which goes to the demodulator (see Fig. 2).
z,(t) 1)
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Fig. 2. Structure of a Standard 4-QAM Quadrature Signal
Demodulator

u_(t)

When describing the processing procedures for
quadrature modulation signals, some publications
miss such an important point as the need to imple-
ment low-frequency filtering procedures in the in-
phase and quadrature channels after removing the
carrier wave.

In the demodulator, the removal of the carrier is
carried out by multiplying the accepted implementa-
tion z(t) (expression (3)), respectively, by the in-phase
and quadrature components generated by the refer-
ence generator. To clarify this point, consider the im-
plementation of this procedure in more detail using
the example of an in-phase channel.

Analytically, the signal z/(t) can be represented as
follows:

z;(t) = z(t) cos(2mfyt) = I(t)cos(2mfyt) X
X cos(2mfyt) — Q(t)sin(2mfyt)cos(2mfyt).

And, using the trigonometric transformation, we
bring the expression (4) to the form:

z;(£) = 0,51(t)[1 + cos(4nfyt)] —
—0,5Q(t)sin(4mfyt) = 0,5I1(t) + (5)
+0,5[1(t)cos(4mfyt) — Q(t)sin(4nfyt)]

Similarly carry out the removal of the carrier in the
quadrature channel.

(4)

In the demodulator, the removal of the carrier is
carried out by multiplying the accepted implementa-
tion z(t) (expression (5)). Note that the carrier remov-
al procedure does not yet provide the original keying
sequence, since the signal z/(t) has a high-frequency
component. For its localization, low-frequency filter-
ing is used [21, 22].

Further, the filtered signals in each of the channels
are fed to the forming devices, from where the pulse
sequences (odd from the in-phase channel, and even
from the quadrature channel) come to the output,
where they are structured into the resulting infor-
mation sequence um(t). An important feature of quad-
rature modulation signals is that the total signal
bandwidth s(t) at the modulator output is similar to
DSB (Double-Sideband) transmission signals [23, 24],
which have a symmetrical spectrum with respect to
the carrier. Note that the spectral redundancy of DSB
signals potentially doubles the information capacity
when using the quadrature method. Since the spec-
trum of signals formed in quadrature, unlike DSB sig-
nals, does not have a constant component at the carri-
er frequency [25], it is easy to restore the phase of the
carrier oscillation with clock synchronization.

Thus, in order to preserve the independence of the
signals I(t) and Q(t), hard clock synchronization must
be provided at the reception when the carrier is re-
moved. In the absence of synchronization of the trans-
ceiver equipment, a phase mismatch occurs between
the oscillation of the demodulator reference oscillator
and the carrier frequency of the received signal. As a
result of such a mismatch, the effect of mutual pene-
tration of the signal I(¢) into the quadrature channel,
and the signal Q(t) into the in-phase channel occurs, as
a result of which crosstalk occurs [26-28]. In this con-
text, the clock signal is called the "phase reference". In
practice, synchronization in radio links using signals
based on quadrature modulation is provided by addi-
tional transmission of a pilot signal [17].

In the interests of studying the spectral images of
quadrature modulation signals, we transform expres-
sion (1) taking into account the equality:

cos(2nfyt + m/2) = —sin(21fyt) (6)
expression (6) and Euler's formulas to the form:

s(t) = I(t) cos(2mfyt) — Q(t)sin(2mfyt) =
= 0,5exp(j2nfot)[1(6) +jQ (D],

where j is the sign of the complex representation.

(7)

And applying the Fourier transform to expression
(7), we obtain the desired spectrum Fs(f):

K(f) = O'S[Fl(f — fo) texp(2nfo)Fo(f — fo)]' (8)

here Fi(f) and Fg(f) are the spectral representations of
the signals I(t) and Q(t) after the execution 8 of the
Fourier transform procedure.

Noise immunity of quadrature modulation signals

The noise immunity of any signal structure is de-
termined by the energy of the signal symbol E [10, 15,
16]. Considering that with quadrature modulation, the
signal symbol is formed on the basis of two compo-
nents, then its energy of the nt" symbol will be deter-
mined as follows:
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E, = (ap + b)E,, 9)

where an and bn are the scaling amplitude coefficients
of the in-phase and quadrature components of the
shaping pulses; Eo is the energy of the forming pulse.

Note that formula (9) fully characterizes only 4-
QAM signals, in which a» and b, have the same values
for any symbol, see Fig. 3.
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Fig. 3. 4-QAM Signal Constellation

However, things are more complicated for multi-
position quadrature modulation signals with n > 4.

So, as an example, in Fig. 4 shows the signal constel-
lation for 16-QAM, as well as the amplitudes An and Ak,
which have different values, since they are formed by
different values of an and bn. Obviously, for a signal
construction, one can only talk about the average en-
ergy Ex per N symbols.
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Fig. 4. 16-QAM Signal Constellation

1 N
By=y > @+ B E, (10)
n=1

Formula (10) introduces the concept of the energy
of the smallest impulse Eo, so the quantities a» and bn
act as amplitude values. This is done so that expres-
sion (10) can be conveniently used for complex struc-
tures with dimensions n > 4.

Since the matrix of an» and b, values for 16-QAM is as
follows:

(—3, 3) (_1' 3) (1' 3) (3! 3)
_[=3D (11 @1 G
@ebd =13 ) (-1-1 -1 @-nft

then if we hypothetically assume that in the 16-QAM
signal structure the order of symbol change is uniform,
then we can calculate the average energy E1s in energy
units of the smallest pulse Eo (in this case, in relation
to Fig. 4, this is the pulse formed by the amplitude val-
ues an and bn ).

The resulting value will be equal to E16 = 10 Eo. Here
and below, the subscript indicates the positional na-
ture of the construction. To understand the considered
approach, the energy Es for the 4-QAM signal struc-
ture, calculated in a similar way according to formula
(11), will be Es = 18 Eo.

That is, the average energy of the 4-QAM signal con-
struct is 1.8 times higher than the average energy of
the 16-QAM signal construct. By the way, for the 2-
QAM design, the symbol energy will also be E2 = 18 Ej,
which corresponds to the well-known fact about the
equality of the noise immunity of QPSK and BPSK sig-
nals.

When assessing the noise immunity of quadrature
modulation signals, the formula proposed in [16] is
often used, which makes it possible to estimate the
probability of a bit error depending on the signal-to-
noise (hereinafter referred to as SNR) ratio h? = E» /
No, where Ej is the energy per bit, and No is noise pow-
er spectral density:

_2(1-17YH <3log2L> 2E,
7 log,L 2-1

| (12)

where L is the number of keying levels defined for the
M-QAM signal as L = +/M; Ej is the signal energy per
bit; No is the noise power spectral density: the Q-
function is the Gaussian error integral:

_;f <_u_2>d
Q(x)—mx exp 5 ) d

However, formula (12) in its final form does not re-
veal the essence of the noise immunity of QAM signals.
Therefore, in the interest of revealing the generality of
signal structures formed on the basis of quadrature
modulation to signals of phase and multiposition am-
plitude manipulation, we consider the probability of
their detection at the reception using expression (13) .

(13)

Thus, the probability of reliable reception of the
QAM signal is possible in the case of a positive deci-
sion to receive the signal in both in-phase and quadra-
ture channels. Taking into account that the error
probability of the L-level amplitude shift keying is de-
termined in accordance with the formula presented in
[29] (the validity of the formula is justified when en-
coding the levels with the Gray code):
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, _2(WM 1) 3E,
VM M — DN, |

then the probability of correct reception simultane-
ously in both channels of the quadrature demodulator
will be determined as 6:

P0=(1—Ps)2_

(14)

(15)

In formula (12), Es is the energy per signal symbol.

Considering that the energy Eb is related to Es by the
following relationship [16, 30]:

Es = Eplog, (M), (16)

the probability of a bit error of reception, taking into
account formulas (14), (15) and (16), we write in the
following form:

|4 26/M-1) 3Eplogz(M) \] -
=11 M ¢ (\/ (M-1)Ng )]

P = )
b log,M

(17)

where division by logzM is due to the fact that the val-
ue of Py is related to the probability of a symbol error
Pc=1 - Po as follows Pc = Py log2M.

Formula (17) is a general expression for assessing
the noise immunity of M-QAM signal structures.
Therefore, for 4-QAM, i. e. for M = 4, we get:

P, = Q (V2h)[1-0,5Q (V2h)].
Accordingly, for 16-QAM, i. e. for M = 16:

(18)

P, = 3 4h 1 3 4h 19
i -2 [5n]| (19)
where h=,/E, /N, .

The analysis of the obtained results showed that the
calculation results, according to formulas (18) and
(19), completely coincide with the results obtained in
accordance with (16), see Fig. 5.

0’11 R.(n?)
0,01
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10x10-6 \ \h2

10x10-7
012 3 456 7 8 9 101 12 13 14 15 16
Fig. 5. Bit Error Probability for 4-QAM and 16-QAM Signals

In addition, the result (17) is similar to the calcula-
tions obtained in accordance with the well-known ex-
pression [17]:

P, = Q (V2h).

In [16], it is indicated that when encoding with a
Gray code, the noise immunity of QPSK signals be-

(20)

comes equal to the noise immunity of BPSK signals. On
Fig. 5 and further in the text along the abscissa of the
SNR value in dB.

Justification of the calculated expression based
on the empirical approach

The analytical complexity of expression (16) and
the strict dependence on the value of the parameter M
limit its practical application in experimental studies.

At the same time, another important indicator that
determines the noise immunity of a signal structure is
the minimum Euclidean distance (MED) A [31, 32],
which can also be used to estimate the probability of a
bit error. And then, given the equality of the signal
energy, to assess the noise immunity, you can use for-
mula (20) with a correction factor Y:

P, = Q (V2hy). (21)
In turn, the coefficient Y will be equal to:
— [AMl/AMZ]
[EMl/EMZ] ’

here Ay, is the value of the MEP of the reference signal
structure, relative to which the comparison is carried
out; Ay, is the value of the MEP of the compared signal
structure; Ey,, is the average energy of the reference
signal structure against which the comparison is
made; Ey, is the average energy of the compared sig-
nal structure.

The MEP value can be calculated based on the logic of
constructing the signal structure itself [33]. So for BPSK
MEP is A, = 2v/2, for 4-QAM MEP is A, = 2, for 16-QAM
MEP is A, = 2/3. You can also calculate the values of
the average energy. In particular, a value of 1.8 was
previously obtained for 16-QAM. Then, taking into ac-
count the value of MEP Ai6 = 2/3, it is possible to calcu-
late the probability of a bit error using formula (21).

On Fig. 6 shows the results of calculating the bit er-
ror probability for a 16-QAM signal based on formulas
(18) and (20).

B

0,1 = -

0 01213 \\expression 20)
10x104 s \\\\

10x10-5

10x10% expression (18) \\ =
10x10-7 \\ &

0123 456 7 8 910 111213 14 1516 17
Fig. 6. Bit Error Probability for 16-QAM Signal

An analysis of the obtained results allows us to
judge that the differences in the calculations do not
exceed 0.5 dB over the entire range of SNR changes. In
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the course of substantiating the calculated expression,
other signal structures formed by the quadrature
method were also investigated. The results obtained
have similar calculation errors, which indicates the
generality of formula (21).

Conclusion

The validity of the proposed approach is based on
the correspondence of the results of analytical modeling
to well-known data. The convenience of the empirical
formula (19) is that it allows using only the values of
MEP and average energy in the synthesis of new signal
structures to assess its noise immunity. This opens up
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