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The study investigates the predictive efficacy of various machine learning met-

hodologies, encompassing Random Forest (RF) regression, Gradient Boosting (GB), 

Xtreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), Least Ab-

solute Shrinkage and Selection Operator (LASSO) regression, and a deep learning 

technique, specifically Long Short-Term Memory (LSTM). The benchmark method 

employed is the autoregressive (AR) model of order 1. With a focus on forecasting 

money demand for the Indian economy, a crucial component for achieving the Cent-

ral Bank of India's inflation targeting objective, a comprehensive monthly dataset 

from 1997 to 2021 is utilized. 

The obtained results underline the robust predictive capabilities of the em-

ployed models concerning both narrow and broad money demand forecasts. By em-

ploying a range of evaluation metrics, the study rigorously compares the predic-

tive performance of these models. Using the expanding window cross validation 

with time series split, the models are cross-validated to ensure accurate forecasts 
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of monetary aggregates. Moreover, the Diebold – Mariano test is utilized to evaluate 

and compare the quality of forecasts. 

In particular, the research finds the superiority of LSTM and LASSO in predic-

tive capabilities for narrow and broad money demand, respectively. These findings 

collectively contribute to enhancing the understanding of money demand predic-

tion, thus facilitating informed decision-making within the realm of monetary policy. 
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1. Introduction 

 

In recent years, the rapid advancements in Machine Learning (ML) techniques have ge-

nerated considerable interest in their application for accurate forecasting of key macroecono-

mic variables. These models offer promising opportunities for enhancing monetary policy deci-

sions. When examining the stability of money demand, the Money Demand Function (MDF) 

serves as a vital tool, establishing a connection between money stocks and crucial macroeco-

nomic indicators such as aggregate income and interest rates. A stable MDF plays a pivotal role in 

steering an economy towards its ultimate objective of price stability. According to [Laidler, 1982], 

the concept of a "stable demand for money function" implies the ability to explain variations in 

money holdings through functional relationships involving a concise set of variables. These re-

lationships should produce statistically significant results within commonly accepted thresholds. 

With this objective in mind, our research focuses on exploring ML approaches to forecast the 

money demand of the Indian economy. 

The demand for money function has garnered considerable empirical attention due to its 

profound implications for the effectiveness of monetary policy, seigniorage, inflation dynamics, 

and other crucial macroeconomic considerations. The new-monetarist economists emphasize the 

importance of money in the monetary policy framework. Thornton (2014) asserts that money 

plays a crucial role in monetary policy, primarily for its role in regulating the price level. Addi-

tionally, he argues that the perceived influence of the monetary authority in managing interest 

rates is overstated. Bordo, Jonung (2003) contend that economists and central bankers tend to 

view the money supply as directly proportional to the rate of inflation. Consequently, predictions 

of future inflation often hinge on a retrospective examination of money demand factors. King 

(2001) and Nelson (2003) caution against neglecting the importance of money, especially in the 

pursuit of maintaining price stability through monetary policy operations.  

In the specific context of the Central Bank of India's current monetary policy framework, 

the accurate prediction of money demand assumes paramount importance for the successful im-
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plementation of policy measures. Since the formal adoption of inflation targeting in India in 2016, 

with a focus on maintaining price stability within a Consumer Price Index (CPI) band of 4% +/– 2%, 

the stability of money demand has emerged as a pivotal factor in achieving efficient price sta-

bility objectives. According to the quantity theory of money, the rate of inflation can be influenced 

by the growth rate of the money supply, assuming a stable money demand. Consequently, a com-

prehensive examination of the MDF and its precise forecasting becomes imperative. Understan-

ding the factors that drive money demand and accurately predicting its behavior are essential 

for formulating effective monetary policy strategies. Therefore, our study aims to provide a 

thorough analysis of the MDF and employ advanced forecasting techniques to enhance the pre-

cision of money demand predictions. 

Accurate estimation of the MDF is of importance for the effective implementation of mone-

tary policy. The stability of the MDF refers to the degree to which the relationship between 

money demand and its determinants remains consistent over time. The MDF captures the in-

fluence of various factors, such as income, interest rates, and inflation, on the demand for money. 

Earlier studies have found a stable MDF after factoring in financial development [Arrau et al., 

1995; Dekle, Pradhan, 1999; James, 2005; Adil et al., 2020]. If the MDF exhibits stability, it implies 

that the same set of determinants that currently affect money demand will continue to do so in 

the future. This stability enhances policymakers' ability to anticipate how changes in monetary po-

licy or economic conditions will impact money demand and, consequently, the overall economy. 

By understanding and accurately estimating the stability of the MDF, policymakers can make 

informed decisions and formulate effective strategies to achieve desired monetary policy out-

comes. In contrast, when the MDF exhibits instability, predicting the impact of economic changes 

on money demand becomes challenging, contributing to financial market volatility and broader 

economic instability. Policymakers are then faced with the task of revising policies more fre-

quently and exercising greater caution in their decision-making processes to maintain economic 

stability.  

The application of ML models in MDF forecasting provides valuable insights to policyma-

kers, enabling a deeper understanding of these intricate dynamics. Predictions stemming from 

ML techniques may be more accurate than those derived from conventional approaches [Bajari 

et al., 2015]. By leveraging the predictive power of ML, our aim is to enhance the accuracy of MDF 

forecasts. Thus, the purpose of the study is to provide a better forecast of money demand for 

both narrow and broad monetary aggregates in India using ML and deep learning models and 

compare their efficacy.  

Various methods have been proposed to understand money demand dynamics, including 

the Autoregressive Distributed Lag Model (ARDL), Error Correction Model (ECM), and Vector 

Autoregression (VAR). However, a deep learning approach, such as Long Short-Term Memory 

(LSTM), offers a more effective alternative due to its ability to capture non-linear relationships in 

time-series analysis. These models outperform traditional approaches and require less prior un-

derstanding of the complex relationships between variables. This highlights the potential of ML 

in enhancing money demand forecasting by uncovering hidden patterns and dynamics that tradi-

tional methods may overlook. In this paper, we employ an LSTM-based deep learning approach 

to forecast the MDF in the context of India. We also compare the performance of this approach 

with other models, including Random Forest (RF) regression, Gradient Boosting (GB), Xtreme 

Gradient Boosting (XGBoost), Support Vector Regression (SVR), Least Absolute Shrinkage and 

Selection Operator (LASSO) regression, and Autoregression (AR) of order 1.  
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The study is structured into six sections. Section 2 provides an extensive review of previous 

studies focusing on the stability of money demand. In Section 3, we describe the dataset and the 

methodology employed for our analysis. Section 4 describes model validation. The empirical 

analysis of the results is presented in Section 5. Finally, Section 6 concludes the study by summa-

rizing the key findings. 

 

2. Literature Review 
 

The understanding of money demand behavior and its interaction with macroeconomic 

variables such as output and inflation has been a popular topic of research because of its impor-

tance in price stability. In this section, we will briefly discuss the empirical research done in this area. 

Adil et al. (2020) examined money demand in India during the post-reform period using 

quarterly data from 1996 to 2016. Their findings, based on the co-integration approach and sta-

bility tests, indicated stable dynamics in the real money balances (M1 and M3) when incorpora-

ting financial innovation. Bahmani-Oskooee (1996) examined the stable long-run relationship 

between money demand and its determinants in the Japanese economy. Using quarterly data 

from 1975 to 1992, the study found a significant negative error correction term, indicating the 

Japanese economy's adjustment to short-run money market imbalances. The findings highlight 

the importance of considering income and interest rate fluctuations in monetary policy decision-

making in Japan. Akinlo (2006) employed the ARDL approach in conjunction with the CUSUM 

and CUSUMSQ tests. They concluded a relatively stable relationship between M2 and key variab-

les such as income, interest rate, and exchange rate.  

Aggarwal (2016) analyzed India's MDF and observed temporary shocks in interest rates 

and M1, indicating the absence of a long-term equilibrium relationship. Bahmani-Oskooee et al. 

(2015) find evidence of a stable relationship between money demand and its covariates, indica-

ting a stable long-run MDF. Barnett et al. (2022) examine the stability of money demand using 

Divisia measures. They find that Divisia monetary aggregates consistently outperform simple-

sum measures, challenging the notion of money demand instability. The study emphasizes the 

importance of using accurate measures of money in economic analysis and has implications for 

monetary policy and understanding the money-economy relationship. Ball (2012) investigates 

the short-term dynamics of money demand, with a focus on the impact of interest rates, income, 

and inflation. The research examines the behavior of M1 in the U.S. from 1960 to 1993. The aut-

hor points out the importance of understanding money demand, especially in the context of re-

versing the quantitative easing policy.  

Goulet Coulombe et al. (2022) highlight the useful features of ML approaches over stan-

dard econometric models and study features such as non-linearity, regularization, and cross-va-

lidation used in ML. The authors conclude that ML is powerful in understanding the nonlinearity 

present in macroeconomic data, which is mostly present in periods of uncertainty, and incorpo-

rating this important feature would result in a better forecast. Gogas et al. (2019) use the SVR 

approach to investigate whether monetary aggregates can affect real economic activity in order 

to understand money neutrality. By employing a feed-forward artificial neural network (ANN), 

Pham et al. (2022) forecast the monthly inflation in Vietnam. They assert the proposed model to 

be reliable because of the narrow gap between actual and predicted inflation values. Nguyen et al. 

(2022) proposed the LSTM approach for macroeconomic forecasting on a total of 215 macroeco-

nomic variables. The authors argue that the LSTM-based approach outperforms models such as 
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VAR in predicting a large number of macroeconomic variables simultaneously. Uyen et al. (2022) 

point out that even when OLS works well, LASSO regression can still be advantageous in variable 

selection and prediction. 

Our research is closely aligned with the study conducted by [Ghose et al., 2021] as we del-

ve into the realm of money demand forecasting and its predictive potential using ML models. In 

their work, they explore the effectiveness of ML models in comparison to traditional economet-

ric approaches. While they found RF regression to be effective, we aim to further enhance the 

ML framework by employing deep learning approaches. Deep learning models, such as LSTM, 

offer the ability to learn complex patterns in the data through multiple processing layers. 

 

 

Fig. 1. Data series after first level differencing (Stationary dataset) 
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3. Dataset, Model Specification and Methodology 

 

3.1. Dataset 

 
The dataset used in our research comprises a monthly time series covering the period from 

1997 to 2021, focusing on the Indian economy. The objective of our study is to forecast both the 

narrow monetary aggregate (M1) and the broad monetary aggregate (M3). To ensure accuracy in 

capturing the characteristics of these aggregates, we have to select an appropriate interest rate 

variable. Following the approach outlined by [Ball, 2012], we use the call money rate as the inte-

rest rate variable for the M1 model, while the government securities yield is employed for the M3 

model. Income is approximated using the Index of Industrial Production (IIP), and the nominal 

effective exchange rate is incorporated to capture exchange rate dynamics. To gauge the financial 

stability of the Indian economy, we adopt the market capitalization of the Bombay Stock Ex-

change (BSE) as a proxy. The dataset is sourced from CEIC, and we apply seasonal adjustments 

to IIP, CPI, M1, and M3 using the X13 ARIMA seasonal adjustment approach. 

 
3.2. Model Specification and Preliminary Analysis 

 
The log linearized MDF is defined in the following: 

(1)  0 1 2 3 4ln ln ln ln .tj
t tj t t t

t

M
Y R E C u

P

⎞⎛
= α + α + α + α + α +⎟⎜

⎝ ⎠
 

In equation 1, ln represents the natural logarithm operator. tjM  denotes the nominal stock 

of money balances for time period t , where j  represents either the narrow money balances (M1) 

or the broad money balances (M3). To calculate real money balances, we divide the nominal stock 

of money balances by the prevailing price level, represented by the CPI denoted as tP . The  

variables in the equation include tY , which represents the IIP, tR  as the interest rate variable 

(call money rate for M1 and government securities rate for M3), tE  as the nominal effective ex-

change rate, and tC  as the market capitalization measured by the BSE stock valuation. We have 

taken a natural log of all the variables except for the interest rate variables, which are in percent-

tage form.  

Before proceeding with the analysis, it is crucial to assess the stationarity of the time se-

ries. To determine stationarity, we conduct the Augmented Dickey – Fuller (ADF) and Phillips – 

Perron (PP) tests, considering a maximum lag length of 15. The results of the unit root test, 

presented in Section 5, indicate that all the data series are non-stationary at the level.  

In our analysis, we employed the log difference transformation to address the non-statio-

narity of time series data and to model the continuous growth rates of economic variables. This 

approach involves taking the natural logarithm of each variable and then calculating the difference 

between consecutive logarithmic values. Figure 1 illustrates the transformed data. 
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3.3. Methodology 
 

3.3.1. Autoregression of Order 1 

 
The Autoregressive (AR) model of order 1, denoted as AR (1), models the next time step in 

a series as a linear function of the observation at the previous time step, plus a noise term. The 
AR (1) model is a single-variable (univariate) model that relies on the assumption that past va-
lues have a linear influence on future values. The AR (1) model can be formally expressed by the 
following equation: 

(2)  1 1 .t t tY c Y −= + φ + ε  

Where tY  is the value of the time series at time t ; c  is a constant term; 1φ  is the coeffi-

cient for the first lag of the series. It quantifies the influence of the previous time step's value 

( )1tY −  on the current value tY . ( )1tY −  is the value of the time series at time 1t − , the previous 

time step; tε  is white noise error at time t , which is assumed to be a normally distributed ran-

dom variable with mean zero and constant variance. This term accounts for randomness or 

unpredictability in the time series that is not explained by the lagged values. The parameter φ  

measures how changes in the previous time step affect the current value. A value close to 1 in-

dicates a strong positive relationship with the previous step, a value close to –1 indicates a strong 

negative relationship, and a value close to 0 indicates a weak relationship. 

 

3.3.2. Random Forest Regression 

 
The Random Forest (RF) method is an extension of the decision tree technique, which 

employs a flowchart-like tree structure. The flowchart-like structure of decision trees aids in de-
cision-making by visualizing the paths taken to reach a conclusion based on input features. At 
each internal node, a decision is made by evaluating an attribute against a threshold. Branches 
from these nodes lead to new questions or decisions, culminating in leaf nodes that represent 
the final outcomes or predictions. This structure simplifies complex decision processes, enabling 
both straightforward interpretation of how decisions are made and easy identification of the 
most influential factors in the decision-making process. The learning process of a decision tree 
involves dividing the source set into subsets based on attribute value tests, recursively partitio-
ning the derived subsets. This recursion continues until all nodes within a subset have the same 
target variable value, or when further splitting does not contribute significantly to predictions. 

It builds multiple decision trees and merges them together to get a more accurate and 
stable prediction. Each decision tree in a random forest is trained on a bootstrapped sample of the 
data, meaning that for each tree, a random sample of the training dataset is selected with re-
placement. This process introduces diversity among the trees, which helps in reducing the varian-
ce of the model. When growing each tree, at each split, Random Forest randomly selects a subset 
of features rather than using all features. This randomness helps in making the model more ro-
bust and less prone to overfitting on the training data. The base learners in Random Forest are 
decision trees. Each tree is grown to its maximum length without pruning, allowing it to capture 
complex patterns in the data. However, individual trees may overfit to their bootstrapped sample. 
The ensemble approach mitigates this overfitting. 
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The following step includes aggregating the predictions. Here, for regression tasks, Ran-

dom Forest predicts the output based on the average predictions of all the individual trees. Mat-

hematically, if there are N  trees, the final prediction ŷ  is calculated as: 

(3)  
1

1
ˆ ( ).

N

ii
y T X

N =
= ∑  

In equation 3, ( )iT X  represents the prediction made by the thi  decision tree for an input 

X . The ensemble’s final prediction, ŷ , is the average of all individual tree predictions, effec-

tively combining their insights to improve accuracy and stability. This averaging process helps 

in reducing the variance of the predictions, making the model more stable and accurate on un-

seen data. During training, N  decision trees are constructed using different bootstrap samples 

of the training data. Each tree is built considering a random subset of features at each split. N  

controls the number of trees in the forest. More trees can increase accuracy but also computa-

tional cost. For a new input, each of the N  trees gives a prediction. In regression, the final output 

is the average of these N  predictions. 

The model operates by creating an ensemble of diverse trees, each trained on a random 

subset of the data with replacement (bootstrap sample), and using a random subset of features 

for splitting nodes. The final prediction is typically the average of all tree predictions. The RF al-

gorithm generates numerous decision trees from randomly sampled databases. For each subset 

of the randomly sampled data, a decision tree is constructed following the process described 

above. However, a key distinction lies in the selection of input variables for each tree, which is do-

ne randomly. This random selection reduces the correlation between trees in the forest, miti-

gating the risk of overfitting. The RF algorithm combines the predictions from multiple decision 

trees trained on bootstrapped and randomly selected subsets of the training data, leading to im-

proved robustness and generalization compared to a single decision tree regression. 

 

3.3.3. Gradient Boosting 

 

Gradient Boosting (GB) is an ensemble learning method that combines multiple individual 

models to create a robust and accurate predictor. The core idea of GB revolves around itera-

tively building an ensemble of simple models, often referred to as weak learners or base models, 

and intelligently combining them to minimize overall prediction error. 

It employs the process of assembling multiple weak learners to create powerful models. 

The method operates through iterative steps, where each new model is trained to reduce the loss 

function of the previous ensemble, such as mean squared error or cross-entropy, by utilizing gra-

dient descent. In each iteration, the algorithm computes the gradient of the loss function with 

respect to the current ensemble's predictions and constructs a new weak model to minimize this 

gradient. The predictions of the new model are then integrated into the ensemble, and this pro-

cess continues until a specified stopping criterion is met. 

The GB model starts with a base model, 0F , which could be the mean of the target values 

for regression tasks. It provides a starting point for the iterative process. For each iteration m , 

a new decision tree is added to the ensemble. It calculates the gradient of the loss function 
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( ),L y F  with respect to the predictions from the current model, 1mF − , for each observation in 

the dataset. This gradient indicates the direction in which the model's predictions need to be 

adjusted to reduce the loss. A weak learner (usually a decision tree) is then fitted to these gra-

dients. Specifically, for regression, the tree is fitted to the negative gradients (pseudo-residuals) of 

the loss function with respect to the predictions. Weak Learner Fitting in GB involves training 

simple models on the residuals or errors of the ensemble's predictions from the previous step. 

These weak learners are usually decision trees with a limited depth, allowing them to capture 

only a portion of the data's variance. It is done to sequentially improve the ensemble by adding 

models that address the most significant current errors, making the overall prediction more 

accurate with each addition. After fitting, the predictions from the new tree are combined with 

the predictions from the existing ensemble to update the model. This process is controlled by a 

learning rate parameter to prevent overfitting. The framework of GB can be explained as the fol-

lowing. 

The initial model 0F  is typically a constant value:  

(4)  ( )0 1
( ) argmin , .

n

ii
F x L y

=
= γ∑  

For regression, γ  can be the mean of the target values y .  

Then, at each step t , the residuals itr  for each observation i  are calculated as the nega-

tive gradient of the loss function L  with respect to the prediction: 

(5)  
( )( )

( )
1( ) ( )

,
.

t

i i
it

i F x F x

L y F x
r

F x
−=

⎡ ⎤∂
= − ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 

A decision tree ( )th x  is then fitted to the residuals itr
 

from the previous step. This tree 

attempts to correct the errors made by the ensemble so far. The next step is to find the optimal step 

size tγ  for each leaf of the tree th , which minimizes the loss when added to the current model:  

(6)  ( ) ( )( )1arg min , ,
j

t i t i t i
i I

L y F x h x−
γ ∈

γ = + γ∑  

where jI  is the set of indices of samples ending up in leaf j . 

Now, the output of the weak learner is then scaled by a factor, η , called the learning 

rate, and added to the current model's prediction to update it: 

(7)  1( ) ( ) ( ).t t tj tj
F x F x h x−= + η γ∑  

Here, tjγ  is the optimal step size for leaf j  and ( )th x  is the prediction of the 
tht  tree. 

These steps are repeated for a specified number of iterations or until additional trees do 

not significantly reduce the loss function. 
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3.3.4. Xtreme Gradient Boosting 

 

Extreme Gradient Boosting (XGBoost) is based on the gradient boosting framework, which 

iteratively combines multiple weak learners (typically decision trees) to create a strong ensemble 

model. Each new tree is added to correct the residuals or errors made by the previous ensemble 

of trees. XGBoost improves upon the traditional gradient boosting method by incorporating regu-

larization terms in its objective function and optimizing both the model's performance and com-

putational efficiency. 

XGBoost constructs a new weak learner, a decision tree, specifically to predict the residuals. 

This new model focuses on learning from the mistakes made by the initial model, aiming to 

improve its predictive capabilities. It uses a gradient descent optimization technique to minimize 

the loss function, such as mean squared error or cross-entropy, by finding the best splits for the 

decision tree nodes. The iterative process continues, with XGBoost adding new weak learners 

to the ensemble in each iteration. At each step, the algorithm computes the gradients of the loss 

function with respect to the current ensemble's predictions. It then constructs a new weak model 

to minimize these gradients, effectively addressing the errors or residuals from the previous 

model. 

As the iterations progress, the ensemble of weak learners gradually improves its predic-

tive performance, capturing complex relationships and patterns in the data. The predictions of the 

new models are combined with those of the existing ensemble using a carefully chosen learning 

rate. This learning rate controls the contribution of each model to the final prediction, ensuring 

a balanced and well-optimized ensemble. 

The XGBoost process can be defined as follows. By incorporating the regularization terms 

in its objective function and optimizing both the model's performance and computational effi-

ciency. The objective function in XGBoost combines a loss function L  and a regularization term 

Ω , which is applied to each tree in the ensemble. The overall objective to be minimized at each 

step (for each tree added) can be written as:  

(8)  ( ) ( )
1 1

ˆ, ,
n K

i i ki k
obj L y y f

= =
= + Ω∑ ∑  

where n  is the number of training samples; iy  is the actual value of the 
thi  sample; ˆiy  is the 

predicted value for the 
thi  sample, which is the sum of the predictions from all K trees up to the 

current tree. kf  represents an individual tree in the ensemble. L  is the loss function that measu-

res the difference between the actual and predicted values. Ω  is the regularization term for 

the trees, which is defined as: 

(9)  ( ) 2

1

1
.

2

T

jj
f T w

=
Ω = γ + λ∑   

Here, T  is the number of leaves in the tree; jw  is the weight assigned to the 
thj  leaf; γ  

and λ  are parameters that control the complexity of the model, with γ  penalizing the number 

of leaves and λ  penalizing the magnitude of the leaf weights. 
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XGBoost uses a second-order approximation to optimize the objective function. For each 

tree, it calculates the gradient ( )ig  and the Hessian ( )ih  of the loss function with respect to the 

prediction for each training instance. These are used to find the optimal structure of the tree and 

the best leaf weights. The gradient and Hessian for a given instance are: 

(10)  
( )
( )

ˆ

2
ˆ

ˆ, ,

ˆ, .

i

i

i y i i

i y i i

g L y y

h L y y

= ∂

= ∂
 

When building each tree, XGBoost selects splits that maximize the gain in the objective, 

which is derived from the gradient and Hessian information. The gain of a split is given by: 

(11)       
( )

( )
( )

( )
( )

( )

2 2 2

1
.

2
L R

L R

i i ii I i I i I

ii i i Ii I i I

g g g
Gain

hh h

∈ ∈ ∈

∈∈ ∈

⎞⎛
⎟⎜

= + − − γ⎟⎜ + λ+ λ + λ ⎟⎜
⎝ ⎠

∑ ∑ ∑

∑∑ ∑
 

Where LI  and RI  are the sets of instance indices in the left and right child regions of the 

split, respectively; I  is the set of instance indices for the parent region. The sums of gradients 

( )ig∑  and Hessians ( )ih∑  are calculated over the instances in the respective sets. This for-

mula takes into account the reduction in loss due to the split (first three terms) and subtracts 

the regularization penalty for adding a new leaf ( )γ . 

After determining the structure of a tree, XGBoost calculates the optimal weight for each 

leaf to minimize the objective function. The optimal weight for a given leaf is:  

(12)  
* ,j

j

ii I

j
ii I

g
w

h

∈

∈

= −
+ λ

∑

∑
 

where jI  is the set of instance indices in the 
thj  leaf. 

 

3.3.5. Support Vector Regression 

 

Support Vector Regression (SVR) is a type of Support Vector Machine (SVM) used for re-

gression tasks. SVR applies the principles of machine learning to predict continuous values. SVR 

finds a function that has at most ε  deviation from the actual target values for all the training data, 

and at the same time, is as flat as possible. Here flatness means seeking a function that does not 

oscillate too much, which typically translates into finding a model with a small coefficient in a 

high-dimensional space. 

SVR is considered a nonparametric technique because it does not rely on a fixed functional 

form or assume any specific underlying distribution. Instead, SVR uses kernel functions to map the 

data into a higher-dimensional feature space, where it can find linear relationships and patterns 

that might not be evident in the original input space.  
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It finds a function ( )f x  that approximates the true relationship between the predictor va-

riables (denoted as x ) and the observed response values (denoted as ny ) from the training data. 

The goal is to ensure that the difference between the predicted values and the true values (the 

residuals) is no greater than a specified margin or tolerance called ε . This margin is an impor-

tant parameter in SVR as it determines the trade-off between model complexity and accuracy. 

SVR aims to minimize the empirical risk, which is the sum of the ε -insensitive loss function and a 

regularization term. The ε -insensitive loss function penalizes the model for large deviations 

between the predicted and actual response values while allowing small deviations within the 

margin (ε ). The loss function can be written as: 

(13)   
0 ( )

.
( )

⎧ − ≤⎪
⎨ − −⎪⎩

if y f x

y f x seotheotherwise

ε

ε

 

Where y is the actual value, ( )f x  is the predicted value, and ε  is the margin of tolerance. 

It uses kernel function to transform the original feature space into a higher-dimensional 

space where a linear separator is sought. It minimizes the following objective function, which 

represents a trade-off between the flatness of ( )f x  and the amount by which predictions fall 

outside the ε -insensitive zone: 
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Here, w  is the weight vector, b  is the bias term, C  is the regularization parameter, iξ
 

and 
*
iξ  are slack variables that measure the degree of misfit for data points outside the ε margin. 

The optimization problem is often solved in its dual form to facilitate the use of kernel func-

tions, allowing the algorithm to operate in the high-dimensional feature space without explicitly 

computing the coordinates of the data in that space. The dual problem involves Lagrange mul-

tipliers and maximizes a Lagrangian function derived from the primal problem. Once the optimal 

w  and b  are found, the regression function can be used for prediction:  

(15)  ( ) , .f x w x b= +  

 

3.3.6. Least Absolute Shrinkage and Selection Operator 

 

LASSO (Least Absolute Shrinkage and Selection Operator) regression is a type of linear 

regression that includes a regularization term. The regularization term is the 1L  norm of the 
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coefficients, which encourages sparsity in the coefficients. In other words, it can reduce the coef-

ficients of less important features to zero, effectively performing feature selection as part of the 

regression. This characteristic makes LASSO particularly useful for models with a large number 

of features, some of which might be irrelevant to the prediction.  

LASSO seeks to find the best-fitting model while simultaneously imposing a constraint on 

the sum of the absolute values of the coefficients. This constraint acts as a regularization term and 

encourages the coefficients of less relevant variables to be set to exactly zero. As a result, LASSO 

performs variable selection by effectively shrinking less important predictors to eliminate their 

contribution to the model. The regulation parameter, λ , controls the trade-off between fitting the 

data well and keeping the model coefficients sparse. 0λ =  corresponds to ordinary least squares 

regression, while very large values of λ  can lead to all coefficients being shrunk to zero. The 

mathematical formulation of LASSO involves minimizing the residual sum of squares, similar to 

the ordinary least squares method, subject to a constraint on the 1L -norm (sum of absolute va-

lues) of the coefficient vector. This constraint controls the amount of regularization applied to 

the model. This can be formulated as the following optimization problem: 

(16)  ( )2

01 1 1

1
min .

2

n p p

i j ij ji j j
y x

nβ = = =
⎧ ⎫− β − β + λ β⎨ ⎬
⎩ ⎭

∑ ∑ ∑  

Where, iy  is the observed response for the 
thi  observation; ijX  is the value of the 

thj  

predictor for the 
thi  observation; jβ  are the coefficients to be estimated; 0β  is the intercept 

term; n  is the number of observations; p  is the number of predictors. λ  is the regularization 

parameter that controls the degree of shrinkage applied to the coefficients. LASSO can set some 

coefficients to zero, effectively selecting a simpler model that relies on fewer features. This is 

particularly beneficial in scenarios with high-dimensional data or when the goal is to identify a 

subset of relevant predictors. As λ  varies, the solution path of the LASSO coefficients can be plot-

ted, showing how each coefficient enters or leaves the model as λ  changes. This path provides 

insights into the relative importance of the features. The higher the value of λ , the greater the 

amount of shrinkage, leading to more coefficients being set to zero. 

 

3.3.7. Long Short-Term Memory 
 

The Long Short-Term Memory (LSTM) model is well-suited for capturing both short-term 
and long-term dependencies within the data due to its ability to incorporate recurrent connec-
tions. These connections enable the model to retain information across different time steps, facili-
tating the understanding of complex patterns and features in the sequential data. LSTM net-
works process input data sequentially, one time stamp at a time. During each time stamp, the 
network takes into account the current input, combines it with the previous memory state, and 
performs various computations using the gates and activation functions. This iterative process 
allows LSTMs to learn and update their internal state, effectively capturing both short-term and 
long-term dependencies within the data. 

Figure 2 illustrates the architecture of an LSTM cell, which is the building block of the LSTM 

model. At each time stamp t , the LSTM cell takes an input vector tx  and produces an output vector 
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th . Additionally, it receives the previous output value ( )1th −  and cell state value ( )1tC − from the 

previous time step. The LSTM cell consists of three gates that regulate the flow of information: 

the input gate ( )ti , the forget gate ( )tf , and the output gate ( )to . Each gate utilizes a sigmoid 

activation function, producing a vector of values ranging from 0 to 1 that determines the amount 

of information to retain or forget. 
 

 

Fig. 2. Structure of an LSTM cell (Sourced from Picture from Christopher Olah’s blog) 

 

The input gate ( )ti  controls the information to be stored in the memory cell ( )tc . It takes 

the previous hidden state ( )1th −  and the current input ( )tx  as inputs. The forget gate ( )tf  de-

termines the extent to which the previous memory cell content is retained or forgotten. It also 

takes the previous hidden state and current input as inputs. The output gate ( )to  determines 

the portion of the memory cell content that should be exposed as the output.  

Mathematically, LSTM can be described as: 

(17)  [ ]( )1, ,t i t t ii W h x b−= σ +  

where ti  is the input gate vector, ( )σ ⋅  represents the sigmoid function, iW  is the weight ma-

trix and ib  is the bias vector for the input gate.  

(18)  [ ]( )1, ,t f t t ff W h x b−= σ +  

where tf  is the forget gate vector, ( )σ ⋅  represents the sigmoid function, fW  is the weight ma-

trix and fb  is the bias vector for the forget gate. 
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Additionally, a memory cell stores the information over time by selectively adding or 

removing information through the input and forget gates. It uses a hyperbolic tangent activa-

tion function to regulate the values that flow through it.  

(19)  [ ]( )1tanh , ,t c t t cс W h x b−

∼
= +  

where tс

∼
 is the candidate memory cell content which represents the new information that can 

be stored in the memory cell, tanh( )⋅  is a hyperbolic tangent activation function to regulate the 

values that flow through it, cW  and cb  are the weight and bias parameters.  

(20)  1 ,t t t t tc f c i с−

∼
= ⋅ + ⋅  

where tc is the memory cell content which is updated based on the input gate ( )ti , forget gate 

( )tf , and candidate memory cell content ( tс

∼
). The forget gate controls how much of the pre-

vious memory cell content ( )1tc −  is retained, while the input gate determines how much of the 

candidate memory cell content ( tс

∼
) is stored. 

(21)  [ ]( )0 1 0, ,t t to W h x b−= σ +  

where to  is output gate vector, ( )σ ⋅  represents the sigmoid function, 0W  is the weight matrix 

and 0b  is the bias vector for the output gate. It calculates a new hidden state th  as following: 

(22)  ( )tanh .t t th o c= ⋅   

By iteratively updating the cell state and hidden state based on the input, forget, and 

output gates, the LSTM model effectively captures the complex dynamics and dependencies wit-

hin the time series data. This enables the model to generate accurate forecasts by learning from 

the sequential patterns present in the dataset. 

 

4. Model Validation 

 

4.1. Expanding Window Cross-validation with Time-Series Split 

 

To ensure our model evaluations are both accurate and robust, we've structured our data-

set into training and testing segments. Our method combines time-series splitting with expanding 

window cross-validation, specifically designed for the sequential nature of time-series data. This 

strategy mimics real-world conditions where models learn from an ever-increasing dataset, 

validating on future data points to guarantee temporal integrity.  

This integrated methodological framework begins by dividing the dataset into an initial 

training segment, constituting 80% of the data, and a testing segment, making up the remaining 

20%. The expanding window cross-validation works in an iterative process, where the training 
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dataset starts with a small subset and is incrementally expanded by including subsequent data 

points in each fold. In our study, these folds are represented by K , where K  takes a value from 

2 to 7. This ensures our model progressively learns from a growing historical dataset, reflecting 

a natural accumulation of data over time. Unlike traditional cross-validation techniques, which 

may disregard the temporal order by randomly partitioning data, our method maintains the se-

quential progression of time by ensuring that the model is always trained on data preceding the 

test set. This is crucial for time series forecasting, where the validity of predictions heavily relies 

on the historical context and temporal dynamics of the dataset. 

Moreover, by combining time-series split with the expanding window technique, we en-

hance the robustness of our model evaluation. This combination not only facilitates a thorough 

assessment of the model's performance over various stages of the dataset but also allows for a 

more nuanced understanding of how the model adapts to and predicts based on an expanding 

body of data over time. The expanding training set mimics a realistic setting where forecasts are 

based on an ever-growing historical context, offering insights into the model's scalability and 

adaptability to new data. This comprehensive evaluation framework thereby ensures a rigorous 

validation process, which is indispensable for developing reliable and accurate forecasting mo-

dels in the realm of time series analysis.  
 

 
Fig. 3. Cross validation 

 

4.2. Hyperparameter Tuning 

 

To further optimize the performance of the models, we employ hyperparameter tuning. 

Hyperparameters are parameters that are not learned from the data but are set by the user be-

fore training the model. They significantly impact the model's performance and generalization 

ability.  

For RF, GB, XGBoost, SVR, and LASSO, we have used the default hyperparameters that come 

with the “sklearn” library.  

For LSTM, we have “pytorch” library and have selected from a range of hyperparameters 

(hidden size, number of layers, dropout rate, and learning rate). In an exhaustive grid search met-

hod2, we explore all possible combinations of hyperparameter values, enabling us to find the 

best set of hyperparameters that yield the highest model performance. We use nested loops to 

iterate over different values of hyperparameters. The hyperparameters being tuned are the hid-

den size, number of layers, dropout rate, and learning rate. These hyperparameters control the 

architecture and training of the LSTM model. Inside the nested loops, the LSTM model is trained 

on the training data using the specified hyperparameters. The best combination of hyperparame-

ters for each split is determined by the lowest validation loss using the MSE criterion. Note that 

we have run the LSTM for 300 epochs for both the M1 and M3. 

                                                 
2 The table containing the list of the best hyperparameters for each fold (represented by K ) is 

provided in the appendix section. 
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4.3. Evaluation Metrics 

 

To evaluate the models, we employ several metrics, namely Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), Mean Absolute Percent Error (MAPE), Symmetric Mean Ab-

solute Percentage Error (SMAPE), and Theil inequality coefficient (TIC). These metrics provide 

valuable insights into the performance of our forecasting models. The employed metrics are cal-

culated as follows: 

The Mean Squared Error (MSE) measures the average of the squared differences between 

the original and predicted values in the dataset. It quantifies the variance of the residuals. The 

formula for MSE is:  

(23)  ( )2

1

1
ˆ .

N

t t
t

MSE y y
N =

= −∑  

The Root Mean Squared Error (RMSE) is the square root of the Mean Squared Error. It 

represents the standard deviation of the residuals. The formula for RMSE is: 

(24)  ( )
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= −∑  

The Mean Absolute Percent Error (MAPE) measures the average absolute percentage 

difference between the actual and predicted values. It provides a percentage measure of the ave-

rage forecasting error. The formula for MAPE is: 

(25)  
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The Symmetric Mean Absolute Percentage Error (SMAPE) is a variation of MAPE that 

addresses the issue of asymmetric errors. It calculates the average absolute percentage difference 

between the actual and predicted values, taking into account the magnitudes of both. The for-

mula for SMAPE is: 
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The Theil inequality coefficient (TIC) evaluates the forecasting performance by comparing 

the forecasted and actual values relative to the average size of the variables. It considers both 

the forecasted and actual values in relation to their magnitudes. The formula for TIC is: 

(27)  
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In these formulas, ty  represents the actual value at time period t , and ˆty  represents the 

predicted value at time period t . N  denotes the total number of observations, which in our case 

is 48. 

 

4.4. Forecasting Accuracy 

 

We use the Diebold-Mariano (DM) test to check the forecasting accuracy of the employed 

models. The DM test is a statistical hypothesis test used to compare the forecasting accuracy of 

two or more forecasting models. It helps determine whether one forecasting model is signifi-

cantly better than another in terms of predictive performance. Earlier, we used several metrics 

that signify the forecast accuracy based on the error term, where a forecast is considered better 

with a low error measure. However, we also need to understand if the difference in these error 

terms is significant enough to consider one forecasted result better than the other. The test as-

sesses whether one model's forecasts are significantly better than the others, based on the Mean 

Squared Error (MSE) criterion. 

We employ the DM test by incorporating the Harvey adjustment. It accounts for potential 

autocorrelation and heteroskedasticity in the forecast errors. The original DM test assumes that 

the forecast errors are independent and identically distributed (i.i.d.), which might not be the case 

in some real-world scenarios. The Harvey adjustment addresses this issue by estimating and ac-

counting for the correlation among the forecast errors over time. It adds a correction factor to the 

DM test statistic to make it more robust to autocorrelation and heteroskedasticity. The adjust-

ment considers the lagged covariance of the forecast errors and adjusts the standard errors of the 

test statistic accordingly. This adjustment provides more accurate results when comparing the 

predictive performance of different models. 

 

5. Empirical Analysis 

 

To ensure an accurate prediction of money demand, it is crucial to confirm the stationarity 

of the variables. We employ two commonly used unit root tests, namely the Augmented Dickey-

Fuller (ADF) test and the Phillips – Perron (PP) test, to examine the presence of unit roots, which 

indicates if the variable is non-stationary. The null hypothesis for both tests is that the variable 

has a unit root, implying non-stationarity. In Table 1, we observe that the unit root null hypothe-

sis cannot be rejected for the series at the level, indicating non-stationarity. To address this, we 

take the first difference of all the variables, transforming them into a first-order integrated I (1) 

series. Subsequent unit root tests confirm that the differenced series are stationary at the 1% 

level of significance. 

With stationary variables, we proceed to compare the forecasting accuracy of different 

models, including AR (1), RFR, GB, XGBoost, SVR, LASSO, and LSTM. The dataset is divided into 

training and testing sets, and to avoid overfitting on the testing set, we employ expanding win-

dow cross-validation with k-fold iterations ( K = 2 to 7). This approach partitions the training 

set into different folds, allowing us to train the model on one part and validate it on the remain-

ning part. This helps improve the accuracy of the model when applied to the testing set. 
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Table 1. 

Unit root test: ADF statistic and Phillip – Perron statistic 

ADF statistic PP Statistic Variable 

Level P value First 

difference

P 

value 

Level P value First 

difference 

P 

value 

M1 –0.533   0.885   –8.102 0.000 –0.358 0.917 –17.163 0.000 

M3 –2.115 0.2385   –2.154 0.223 –3.643 0.005 –20.414 0.000 

CPI   0.285   0.977   –4.431 0.000 –0.323 0.922 –13.758 0.000 

IPI –1.811   0.375 –14.149 0.000 –2.067 0.258 –35.215 0.000 

Govt 

securities 

yield –2.476   0.121   –8.124 0.000 –2.829 0.054 –18.120 0.000 

Call money 

rate –5.559   1.559   –9.929 0.000 –9.675 0.000 –39.363 0.000 

NEER –0.629   0.864 –14.365 0.000 –0.373 0.914 –14.161 0.000 

BSE mkt 

cap –0.482   0.895   –15.66 0.000 –0.516 0.889 –15.612 0.000 

 

 

Table 2. 

Prediction of M1 

K = 6 
 

MSE RMSE MAPE SMAPE TIC 

AR (1) 0.00406 0.06373   0.43964 0.44097 0.00260 

RF 0.00707 0.08409   0.58642 0.58874 0.00343 

GB 0.00963 0.09813   0.68041 0.68357 0.00401 

XGBoost 0.00720 0.08488   0.59384 0.59618 0.00346 

SVR 0.00285 0.05338   0.36694 0.36601 0.00217 

LASSO 0.04045 0.20113   1.41856 1.43188 0.00824 

LSTM 0.00617 0.07854 0.518799 0.51681 0.00318 

 

To evaluate the forecasting accuracy of the models, we analyze the errors, which are the 

differences between the true values and the predicted values. Several criteria, including MSE, RMSE, 

MAPE, SMAPE, and TIC, are used to assess the performance of the models. Table 2 and 3 present 

the forecasted results for M1 and M3 over K  folds, where k takes the value 63. The AR (1) model 

                                                 
3 The table containing the results for K = 2 to 7 folds is presented in the appendix section. 
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serves as a benchmark. Considering the low values of the evaluation metrics in the evaluated 

results, it suggests that all models have a certain level of efficacy in forecasting the employed mo-

dels. However, it can be important to understand the accuracy of each model by comparing their 

predictive performance. The analysis of prediction models for M1 money supply reveals distinct 

performance levels across various methodologies. SVR demonstrates the lowest error metrics 

(MSE, RMSE, MAPE, SMAPE), suggesting its superior ability to forecast with precision. On the other 

hand, LASSO and GB models exhibit relatively higher error rates, indicating potential overfitting 

or underfitting issues, thus proving less effective for this dataset. LSTM's balanced error metrics 

suggest its capability in handling complex temporal patterns, making it a viable option for time 

series forecasting. 

The performance metrics for forecasting M3 money supply, evaluated across different mo-

dels, showcase varied efficacy and accuracy. The LSTM model stands out with the lowest MSE, 

RMSE, MAPE, SMAPE, and TIC values, indicating it is the most accurate and efficient model for 

this dataset. This suggests LSTM's superior ability in capturing the complex temporal depend-

encies inherent in the M3 money supply data. GB and RF models also exhibit strong perform-

ance, with very competitive error metrics, signifying their effectiveness in handling time series 

forecasting for M3, albeit slightly less accurately than LSTM. These insights highlight the impor-

tance of model selection based on the specific characteristics of the financial time series being 

forecasted, with LSTM accurately modeling the M3 money supply. 

Table 3. 

Prediction of M3 

K = 6 
 

MSE RMSE MAPE SMAPE TIC 

AR (1) 0.00428 0.06541 0.38088 0.37976 0.00238 

RF 0.00334 0.05775 0.32549 0.32462 0.00210 

GB 0.00329 0.05738 0.32292 0.32206 0.00208 

XGBoost 0.00560 0.07482 0.45037 0.44891 0.00272 

SVR 0.00480 0.06929 0.40566 0.40440 0.00252 

LASSO 0.01778 0.13333 0.86918 0.87388 0.00487 

LSTM 0.00254 0.05042 0.28840 0.28774 0.00183 

 

To provide a more conclusive assessment of forecasting accuracy, we employ the DM test. 

This test allows us to compare the quality of forecasts and determine the forecasting accuracy 

of the models. The results of the DM test are presented in Tables 4 and 5 for M1 and M3, respec-

tively. The matrix format of the results compares the forecasts of two models in each cell. The 

DM test is employed for K = 6. According to the DM test, for the M1 forecast, the LSTM model's 

forecasts are statistically significantly different from the other models, indicating the better fore-

casting performance of LSTM. When comparing the forecasts made by LSTM, the difference is 

statistically significant at the 1% level for all of the models. Whereas, for M3, LASSO is performing 

better than other employed models. 
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Table 4. 

Diebold – Mariano test for M1 

K = 6 AR (1) RF GB XGBoost SVR LASSO LSTM 

AR (1) – –8.504*** –4.063*** –1.206 2.665** –7.616*** –7.724*** 

RF 8.504*** – 7.503*** 6.670*** –11.996*** –7.436*** –7.608*** 

GB 4.063*** –7.503*** – 4.872*** 4.882*** –7.476*** –7.632*** 

XGBoost 1.206 –6.670*** –4.872*** – 3.529*** –7.467*** –7.672*** 

SVR –2.665** 11.996*** –4.882*** –3.529*** – –7.472*** –7.788*** 

LASSO 7.616*** 7.436*** 7.476*** 7.467*** 7.472*** – –7.133*** 

LSTM 7.724*** 7.608*** 7.632*** 7.672*** 7.788*** 7.133*** – 

Note: *, ** and *** are 10%, 5%, and 1% level of significance. 

 

 

 

Table 5. 

Diebold – Mariano test for M3 

K = 6 AR (1) RF GB XGBoost SVR LASSO LSTM 

AR (1) – 6.257*** 6.409*** –6.783*** –6.636*** –9.215*** 8.331*** 

RF –6.257*** – –2.544** –6.887*** –6.548*** –9.164*** 2.924*** 

GB –6.409*** 2.544** – –7.532*** –7.882*** –9.417*** 4.881*** 

XGBoost 6.783*** 6.887*** 7.532*** – 6.746*** –9.749*** 7.265*** 

SVR 6.636*** 6.548*** 7.882*** –6.746*** – –9.323*** 7.746*** 

LASSO 9.215*** 9.164*** 9.417*** 9.749*** 9.323*** – 9.245*** 

LSTM –8.331*** –2.924*** –4.881*** –7.265*** –7.746*** –9.245*** – 

Note: *, ** and *** are 10%, 5%, and 1% level of significance. 

 

6. Conclusion 

 

The stability of the Money Demand Function (MDF) plays a pivotal role in the effective 

modeling and analytical examination of how monetary and fiscal policies influence economic 

outcomes. This aspect gains heightened importance in the backdrop of India's central bank ado-

pting an inflation-targeting framework. Within this framework, the precise forecasting of a stable 

MDF is indispensable for the successful implementation of policies aimed at controlling infla-

tion. The Quantity Theory of Money emphasizes the significance of a stable MDF in guiding infla-

tion-targeting efforts. This theory posits that the growth of the money supply determines the 

long-term inflation rate, and a stable MDF is a key component in this relationship.  
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The field of Machine Learning (ML) has seen significant advancements, opening up novel 
opportunities for the forecasting of economic indicators with enhanced precision. Notably, the 
Long Short-term Memory (LSTM) model, which is rooted in deep learning techniques, has de-
monstrated remarkable proficiency in learning from complex and nonlinear data patterns to make 
accurate predictions. Our research attempts to explore the capabilities of LSTM models exten-
sively, assessing their performance in forecasting money demand compared to other ML models, 
including Random Forest (RF), Gradient Boosting (GB), XGBoost, Support Vector Regression 
(SVR), LASSO, and Autoregressive (AR) models. 

To assess the forecasting accuracy of these diverse models, we employ a comprehensive 
set of evaluation criteria, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE), 
and Total Information Criterion (TIC). Lower values across these metrics are indicative of superior 
model performance and a closer fit to the actual dataset. Our empirical findings reveal uniformly 
lower metric values for the models under consideration, suggesting enhanced forecasting accu-
racy. To further substantiate these findings and draw more definitive conclusions regarding fore-
casting precision, we utilize the Diebold-Mariano (DM) test. This test serves as an objective fra-
mework for comparing the predictive performances of two competing forecasting models by 
evaluating the statistical significance of the differences in their forecasting errors. For this pur-
pose, we adopt MSE as the primary loss function to quantify prediction accuracy. 

The outcomes of the DM test affirm the superiority of LSTM models in forecasting narrow 
money demand (M1), with the test results being statistically significant at a 1% level of signifi-
cance when contrasted with almost all other models examined. Conversely, when forecasting the 
broader money demand (M3), the LASSO model is the most accurate, surpassing the forecasting 
performance of other models. 

In conclusion, our study highlights the fundamental importance of maintaining a stable 
MDF for effective monetary policy and the potential of ML models, particularly LSTM and LASSO, 
in achieving precise forecasts of money demand. These ML models prove to provide an accurate 
prediction by unraveling the intricate patterns and dynamics essential for accurate money de-
mand forecasting. 

 

Appendix 

 

Table 6. 

Description of the variables 

Variable Variables description Source 

M1 Narrow monetary aggregate CEIC 

M3 Broad monetary aggregate CEIC 

CPI Consumer Price Index CEIC 

IPI Index of Industrial Production CEIC 

Govt securities yield Government Securities Yield CEIC 

Call money rate Call money rate CEIC 

NEER Nominal effective exchange rate CEIC 

BSE mkt cap Bombay Stock Exchange market capitalization CEIC 
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Table 7. 

Prediction of M1 

 MSE RMSE MAPE SMAPE TIC 

K = 2 

AR (1) 0.00163 0.04039 0.27357 0.27410 0.00164 

RF 0.00407 0.06378 0.43521 0.43654 0.00260 

GB 0.00561 0.07489 0.51580 0.51763 0.00305 

XGBoost 0.00478 0.06916 0.50488 0.50644 0.00282 

SVR 0.00285 0.05338 0.36694 0.36601 0.00217 

LASSO 0.04045 0.20113 1.41856 1.43188 0.00824 

LSTM 0.00067 0.02587 0.18430 0.18408 0.00105 

K = 3 

AR (1) 0.00422 0.06495 0.44968 0.45106 0.00265 

RF 0.00759 0.08711 0.61506 0.61755 0.00355 

GB 0.00814 0.09024 0.63670 0.63934 0.00368 

XGBoost 0.00210 0.04584 0.30681 0.30740 0.00187 

SVR 0.00285 0.05338 0.36694 0.36601 0.00217 

LASSO 0.04045 0.20113 1.41856 1.43188 0.00824 

LSTM 0.01786 0.13365 0.96713 0.96133 0.00540 

K = 4 

AR (1) 0.00490 0.07002 0.48359 0.48520 0.00285 

RF 0.00781 0.08837 0.61852 0.62107 0.00360 

GB 0.01006 0.10028 0.70007 0.70336 0.00409 

XGBoost 0.00588 0.07666 0.53900 0.54091 0.00312 

SVR 0.00285 0.05338 0.36694 0.36601 0.00217 

LASSO 0.04045 0.20113 1.41856 1.43188 0.00824 

LSTM 0.38360 0.61935 4.36226 4.24103 0.02463 

K = 5 

AR (1) 0.00481 0.06932 0.48069 0.48226 0.00282 

RF 0.00798 0.08933 0.62454 0.62716 0.00364 

GB 0.00846 0.09200 0.65147 0.65425 0.00375 

XGBoost 0.00492 0.07012 0.49278 0.49438 0.00286 

SVR 0.00285 0.05338 0.36694 0.36601 0.00217 

LASSO 0.04045 0.20113 1.41856 1.43188 0.00824 

LSTM 1.16807 1.08077 7.58210 7.22144 0.04230 

K = 7 

AR (1) 0.00439 0.06625 0.45983 0.46127 0.00270 

RF 0.00838 0.09154 0.64145 0.64420 0.00373 

GB 0.00675 0.08218 0.57166 0.57387 0.00335 

XGBoost 0.00464 0.06813 0.48441 0.48592 0.00278 

SVR 0.00285 0.05338 0.36694 0.36601 0.00217 

LASSO 0.04045 0.20113 1.41856 1.43188 0.00824 

LSTM 0.07542 0.27463 1.94317 1.91890 0.01106 
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Table 8. 

Prediction of M3 

 MSE RMSE MAPE SMAPE TIC 

K = 2 

AR (1) 0.00764 0.08740 0.51865 0.51666 0.00317 

RF 0.00572 0.07562 0.44030 0.43880 0.00275 

GB 0.00583 0.07635 0.46145 0.45993 0.00277 

XGBoost 0.00801 0.08950 0.51842 0.51632 0.00325 

SVR 0.00480 0.06929 0.40566 0.40440 0.00252 

LASSO 0.01778 0.13333 0.86918 0.87388 0.00487 

LSTM 0.00687 0.08286 0.49565 0.49385 0.00301 

K = 3 

AR (1) 0.00582 0.07631 0.45038 0.44886 0.00277 

RF 0.00381 0.06174 0.34802 0.34702 0.00224 

GB 0.00532 0.07294 0.42409 0.42270 0.00265 

XGBoost 0.00791 0.08891 0.08891 0.56428 0.00323 

SVR 0.00480 0.06929 0.40566 0.40440 0.00252 

LASSO 0.01778 0.13333 0.86918 0.87388 0.00487 

LSTM 0.00370 0.06085 0.35110 0.35016 0.00221 

K = 4 

AR (1) 0.00462 0.06794 0.39716 0.39596 0.00247 

RF 0.00481 0.06933 0.39223 0.39097 0.00252 

GB 0.00398 0.06308 0.34811 0.34708 0.00229 

XGBoost 0.00742 0.08617 0.51045 0.50851 0.00313 

SVR 0.00480 0.06929 0.40566 0.40440 0.00252 

LASSO 0.01778 0.13333 0.86918 0.87388 0.00487 

LSTM 0.01052 0.10256 0.67720 0.67444 0.00372 

K = 5 

AR (1) 0.00432 0.06574 0.38390 0.38277 0.00239 

RF 0.00325 0.05701 0.31400 0.31315 0.00207 

GB 0.00308 0.05549 0.30813 0.30733 0.00202 

XGBoost 0.00594 0.07708 0.47436 0.47281 0.00280 

SVR 0.00480 0.06929 0.40566 0.40440 0.00252 

LASSO 0.01778 0.13333 0.86918 0.87388 0.00487 

LSTM 0.00212 0.04599 0.27226 0.27176 0.00167 

K = 7 

AR (1) 0.00413 0.06423 0.37380 0.37272 0.00233 

RF 0.00334 0.05778 0.32976 0.32889 0.00210 

GB 0.00361 0.06010 0.33609 0.33515 0.00218 

XGBoost 0.00737 0.08587 0.52506 0.52313 0.00312 

SVR 0.00480 0.06929 0.40566 0.40440 0.00252 

LASSO 0.01778 0.13333 0.86918 0.87388 0.00487 

LSTM 0.00312 0.05587 0.31937 0.31857 0.00203 
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Table 9. 

LSTM Hyperparameters Grid for M1 

K Hidden Size Number of Layers Dropout Rate Learning Rate 

2 64 2 0.2 0.0005 

3 64 1 0.2 0.0005 

4 128 1 0.1 0.0001 

5 64 3 0.1 0.0005 

6 128 1 0.1 0.0005 

7 32 1 0.1 0.003 

 

 

 

Table 10. 

LSTM Hyperparameters Grid for M3 

K Hidden Size Number of Layers Dropout Rate Learning Rate 

2 64 3 0.1 0.0008 

3 64 2 0.2 0.0005 

4 64 2 0.1 0.003 

5 32 3 0.2 0.003 

6 32 3 0.1 0.0008 

7 32 3 0.1 0.0008 
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В исследовании изучается прогностическая эффективность различных методоло-

гий машинного обучения, включая регрессию случайного леса (RF), градиентное усиле-

ние (GB), экстремальное градиентное усиление (XGBoost), регрессию опорных векторов 

(SVR), регрессию наименьшего абсолютного сокращения и оператора выбора (LASSO) и 

метод глубокого обучения, в частности, долгосрочную краткосрочную память (LSTM). В 

качестве эталонного метода используется модель авторегрессии (AR) первого порядка. 

С акцентом на прогнозирование спроса на деньги для экономики Индии, важнейшего 

компонента для достижения цели таргетирования инфляции Центральным банком Ин-

дии, используется полный ежемесячный набор данных с 1997 по 2021 год. 

Полученные результаты подчеркивают надежные прогностические возможности 

используемых моделей в отношении как узких, так и широких прогнозов спроса на день-

ги. Используя ряд оценочных показателей, исследование строго сравнивает прогности-

ческую эффективность этих моделей. Используя перекрестную проверку расширяюще-

гося окна с разделением временных рядов, модели подвергаются перекрестной провер-

ке для обеспечения точных прогнозов денежных агрегатов. Кроме того, тест Диболда – 

Мариано используется для оценки и сравнения качества прогнозов. 

В частности, исследование обнаруживает превосходство LSTM и LASSO в прогно-

стических возможностях для узкого и широкого спроса на деньги соответственно. Эти 

результаты в совокупности способствуют улучшению понимания прогнозирования спро-

са на деньги, тем самым облегчая принятие обоснованных решений в сфере денежно-

кредитной политики. 
 

Ключевые слова: узкий спрос на деньги; широкий спрос на деньги; модели ма-

шинного обучения; регрессия случайного леса; градиентный бустинг; экстремальный 

градиентный бустинг; регрессия опорных векторов; LASSO; долгосрочная краткосроч-

ная память. 
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