Поверхности с главным каркасом из трех заданных кривых, одна из которых - окружность
- Авторы: Кривошапко С.Н.1
-
Учреждения:
- Российский университет дружбы народов
- Выпуск: Том 19, № 2 (2023)
- Страницы: 210-219
- Раздел: Геометрия срединных поверхностей оболочек
- URL: https://journal-vniispk.ru/1815-5235/article/view/325846
- DOI: https://doi.org/10.22363/1815-5235-2023-19-2-210-219
- EDN: https://elibrary.ru/CWWLDM
- ID: 325846
Цитировать
Полный текст
Аннотация
Благодаря своей универсальности суперэллипсы становятся все более востребованными в различных отраслях науки. Наибольшее применение они нашли в судостроении. В последнее время появились предложения по использованию суперэллипсов в архитектуре и строительстве. Предлагаются явные и параметрические уравнения поверхностей с главным каркасом из трех заранее заданных суперэллипсов, лежащих в трех координатных плоскостях. Эти уравнения описывают большой набор аналитических форм, пригодных для формирования срединных поверхностей тонких строительных оболочек. Один из суперэллипсов взят в виде окружности. Оболочки можно проектировать на круглом и ромбическом планах, а также на планах в форме суперэллипсов общего вида с выпуклыми и вогнутыми сторонами. Все рекомендуемые поверхности проиллюстрированы на 24 примерах средствами компьютерной графики. С помощью безразмерных независимых параметров на поверхностях сформирована сеть криволинейных неортогональных координат. Рассматриваемые поверхности могут войти в резерв поверхностей для дальнейшего использования в реальных конструкциях и сооружениях.
Ключевые слова
Об авторах
Сергей Николаевич Кривошапко
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: sn_krivoshapko@mail.ru
ORCID iD: 0000-0002-9385-3699
доктор технических наук, профессор, профессор департамента строительства, инженерная академия
Москва, Российская ФедерацияСписок литературы
- Ko K.H. A survey: application of geometric modeling techniques to ship modeling and design. International Journal of Naval Architecture and Ocean Engineering. 2010;2(4):177-184. http://doi.org/10.2478/IJNAOE-2013-0034
- Avdonev E.Ya. Mathematical model of hull surface. Prikladnaya Geometriya i Inzhenernaya Grafika (issue 28). Kiev; 1979. p. 46-49. (In Russ.)
- Karnevich V.V. Hydrodynamic surfaces with midship section in the form of the Lame curves. RUDN Journal of Engineering Research. 2021;22(4):323-328. https://doi.org/10.22363/2312-8143-2021-22-4-323-328
- Ma Y.Q., Wang C.M., Ang K.K. Buckling of superellipsoidal shells under uniform pressure. Thin-Walled Structures. 2008;46(6):584-591. http://doi.org/10.1016/j.fws.2008.01.013
- Moonesun M., Mahdion A., Korol Yu.M., Dadkhah M., Javadi M.M. Concepts in submarine shape design. Indian Journal of Geo-Marine Sciences. 2016;45(1):100-104.
- Krivoshapko S.N. Algebraic ship hull surfaces with a main frame from three plane curves in coordinate planes. RUDN Journal of Engineering Research. 2022;23(3):207-212. (In Russ.) http://doi.org/10.22363/2312-8143-2022-23-3-207-212
- Krivoshapko S.N., Aleshina O.O., Ivanov V.N. Static analysis of shells with middle surfaces containing the main frame from three given superellipses. Structural Mechanics and Analysis of Constructions. 2022;(6):18-27. (In Russ.) http://doi.org/10.37538/0039-2383.2022.6.18.27
- Strashnov S.V. Computer simulation of new forms of shell structures. Geometry & Graphics. 2022;(4):26-34. (In Russ.) https://doi.org/10.12737/2308-4898-2022-10-4-26-34
- Erbaş K.C. Surface area of superellipsoids and its application to physics problems. New Applications in Basic Sciences. Iksad Publishing House; 2022. p. 39-63.
- Elishakoff I., Elettro F. Interval, ellipsoidal, and super-ellipsoidal calculi for experimental and theoretical treatment of uncertainty: which one ought to be preferred? International Journal of Solids and Structures. 2014;51:1576-1586.
- Abramovich N.A., Nesterovich N.D. Superellipse in eco-system APPLE. Proceedings of the 54th International Scientific and Technical Conference of Professors and Students (vol. 2). Vitebsk; 2021. p. 102-104. Available from: http://rep.vstu.by/handle/123456789/14813 (accessed: 22.05.2022).
- Krivoshapko S.N. Tangential developable and hydrodynamic surfaces for early stage of ship shape design. Ships and Offshore Structures. 2022:1-9. https://doi.org/10.1080/17445302.2022.2062165
- Huang W., Li Y., Niklas K.J., Gielis J., Ding Y., Cao L., Shi P. A superellipse with deformation and its application in describing the cross-sectional shapes of a square bamboo. Symmetry. 2020;12(12):2073. https://doi.org/10.3390/sym12122073
- Krivoshapko S.N., Ivanov V.N. Algebraic surfaces for rational ship hulls. Tehnologiya Mashinostroeniya. 2022;(3):17-24. (In Russ.)
- Mamieva I.A. Ruled algebraic surfaces with a main frame from three superellipses. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(4):387-395. (In Russ.) https://doi.org/10.22363/1815-5235-2022-18-4-387-395
- Aleshina O.O. Geometry and static analysis of thin shells in the form of a diagonal transfer surface of the velaroidal type. Structural Mechanics of Engineering Constructions and Buildings. 2023;19(1):84-93. (In Russ.) https://doi.org/10.22363/1815-5235-2023-19-1-84-93
- Mamieva I.A., Karnevich V.V. Geometry and static analysis of thin shells with ruled median surfaces with a main frame of three superellipse. Building and Reconstruction. 2023;(1):16-27. (In Russ.) https://doi.org/10.33979/2073-7416-2023-105-1-16-27, EDN LSIOLJ
- Mamieva I.A., Razin A.D. Prominent space erections in the form of conic surfaces. Industrial and Civil Engineering. 2017;(10):5-11. (In Russ.)
- Gil-oulbe M., Qbaily J. Geometric modeling and linear static analysis of thin shells in the form of cylindroids. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(6):502-508. http://doi.org/10.22363/1815-5235-2018-14-6-502-508
- Karnevich V.V. Generating hydrodynamic surfaces by families of Lame curves for modelling submarine hulls. RUDN Journal of Engineering Research. 2022;23(1):30-37. (In Russ.) http://doi.org/10.22363/2312-8143-2022-23-1-30-37
- Gil-oulbe M. Reserve of analytical surfaces for architecture and construction. Building and Reconstruction. 2021;(6):63-72. http://doi.org/10.33979/2073-7416-2021-98-6-63-72
- Krivoshapko S.N., Bock Hyeng C.A., Gil-oulbe M. Stages and architectural styles in design and building of shells and shell structures. Building and Reconstruction. 2022;(4):112-131. http://doi.org/10.33979/2073-7416-2022-102-4-112-131
Дополнительные файлы
