Параметризация диаграммы Максвелла - Кремоны для определения усилий в элементах треугольной фермы типа «ножницы»

Обложка

Цитировать

Полный текст

Аннотация

Выполнен расчет по определению характера изменения значений усилий в элементах треугольной фермы типа «ножницы» в зависимости от положения точек примыкания ветвей её нижнего пояса к элементам верхнего пояса. Изыскание эффективных конструктивных решений ферм в контексте гармоничного сочетания максимальной прочности и минимального веса конструкции является устойчивым подходом к более рациональному использованию строительных материалов и развитию зеленого строительства. Это обуславливает актуальность данного направления исследований. Анализ вариантов конфигурации треугольной исследуемой фермы выполнен с помощью параметризованной диаграммы Максвелла - Кремоны, которая является наглядным инструментом в представлении результатов расчета и полноценно отражает зависимость усилий в элементах конструкции от ее параметров. Процесс исследований был воплощен с помощью табличного процессора MS Excel, что сложилось в программное средство для поиска эффективных конструктивных решений ферм типа «ножницы», которое в полной мере обладает потенциалом к дальнейшему совершенствованию и развитию. Функционал программы может быть расширен до возможности проектирования ферм типа «ножницы» из различных конструкционных материалов, а также для различных форм поперечного сечения ее элементов. Предлагаемый подход к расчёту таких конструкций может послужить основой для параметризации ферм с другими типами стержневой решётки.

Об авторах

Владимир Анатольевич Репин

Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых

Email: skia2000@mail.ru
ORCID iD: 0000-0001-9107-6606
SPIN-код: 8650-1055

кандидат технических наук, доцент кафедры строительных конструкций, Институт архитектуры, строительства и энергетики

Владимир, Россия

Анастасия Васильевна Лукина

Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых

Автор, ответственный за переписку.
Email: pismo.33@yandex.ru
ORCID iD: 0000-0001-6065-678X
SPIN-код: 8745-0004

кандидат технических наук, доцент кафедры строительных конструкций, Институт архитектуры, строительства и энергетики

Владимир, Россия

Артем Андреевич Стрекалкин

Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых

Email: a.a.strekalkin@gmail.com
ORCID iD: 0000-0002-6338-6241
SPIN-код: 6632-0378

кандидат технических наук, доцент кафедры строительных конструкций, Институт архитектуры, строительства и энергетики

Владимир, Россия

Список литературы

  1. Garifullin M.R., Naumova E.A., Zhuvak O.V., Barabash A.V. Surrogate modeling in construction. Construction of unique buildings and structures. 2016;2(41):118-132. (In Russ.) EDN VPWHRR
  2. Chibrikin D.A., Lukin M.V., Lukina A.V., Tyurikova T.V., Roshchina S.I. Numerical investigation of the stressstrain state of a modified wooden beam. Izvestia of higher educational institutions. Forest Journal. 2022;3(387):167-178. (In Russ.) https://doi.org/10.37482/0536-1036-2022-3-167-178
  3. Schulze B., Millar C. Graphic statics and symmetry. International Journal of Solidsand Structures. 2023, 112492. http://doi.org/10.1016/j.ijsolstr.2023.112492
  4. Markou A.A., Ruan G. Graphic statics: projective funicular polygon. Structures. 2022;41:1390-1396. http://doi.org/10.1016/j.istruc.2022.05.049
  5. Lu Y., Hablicsek M., Akbarzadeh M. Algebraic 3D Graphic Statics with Edge and Vertex Constraints: AComprehensive Approach to Extend the Solution Space for Polyhedral Form-Finding. Computer-Aided Design. 2024;166:103620. http://doi.org/10.1016/j.cad.2023.103620
  6. Radhi A., Iacobellis V., Behdinan K. Manipulation of topologically optimized structures using graphic statics.Materialsand Design. 2021;198:109286. http://doi.org/10.1016/j.matdes. 2020.109286
  7. Sergeev M., Rimshin V., Lukin M., Zdralovic N. Multi-span composite beam. IOP Conference Series: Materials Science and Engineering. 2020;896:012058. https://doi.org/10.1088/1757-899X/896/1/012058
  8. Xu Z., Cui Y., Li B. Truss Structure Optimization Design Based on FE-PSO-SQP Algorithm. In: Kountchev R., Mironov R., Nakamatsu K. (eds). New Approaches for Multidimensional Signal Processing. NAME SP2022. Smart Innovation, Systems and Technologies. Singapore: Springer; 2022;332:151-158. https://doi.org/10.1007/978-981-19-7842-5_14
  9. Zhidkov K.E., Zverev V.V., Kapyrin N.V. Experimental field studies of wooden trusses on metal toothed plates. Construction mechanics and structures. 2021;4(31):90-98. (In Russ.) https://doi.org/10.36622/VSTU.2021.31.4.008
  10. Larsen S.D., Sigmund O., Groen J. Optimal truss and frame design from projected homogenization-basedtopology optimization. Structural and Multidisciplinary Optimization. 2018;57(4):1461-1474. https://doi.org/10.1007/s00158-018-1948-9
  11. Lukin M.V., Chibrikin D.A., Roshchina S.I. Numerical studies of modified composite beams taking into accountthe physical nonlinearity of wood. News of higher educational institutions. Construction. 2023;5(773):5-19. (In Russ.) https://doi.org /10.32683/0536-1052-2023-773-5-5-19
  12. Cai S., Zhang H., Zhang W. An integrated design approach for simultaneous shape and topology optimization ofshell structures. Computer Methods in Applied Mechanics and Engineering. 2023;415:116218. https://doi.org/10.1016/j.cma.2023.116218
  13. Khokhlov A.V. Properties of a family of constant-velocity loading curves generated by a nonlinear Maxwell-typeviscoelastic plasticity model. Mechanical engineering and engineering education. 2017;1(50):57-71. EDN YLIVPZ
  14. Buzurukov Zh.I., Segaev I.N. Farms. Pridneprovsky scientific bulletin. 2019;5(5):12-15. (In Russ.) EDN DNWNVJ
  15. Massafra A., Prati D., Predari G., Gulli R. Wooden truss analysis, preservation strategies, and digital documentation through parametric 3D modeling and HBIM workflow. Sustainability. 2020;12(12):4975. https://doi.org/10.3390/su12124975
  16. Repin V.A., Lukina A.V., Usov A.S. Rational constructive solutions of triangular farms. Construction mechanics of engineering structures and structures. 2023;19(2):199-209. (In Russ.) http://doi.org/10.22363/1815-5235-2023192-199-209
  17. Marutyan A.S. Steel lattice structures made of square pipes with upper belts reinforced with channels, and theircalculation. Construction mechanics and calculation of structures. 2015;5(262):62-69. (In Russ.) EDN UIXKZX
  18. Khudyakov V.A., Pastushkov V.G. Designing farms using main voltage lines. Transport. Transport facilities. Ecology. 2015;1:131-147. EDN TXOYRR
  19. Bolhassani M., Akbarzadeh M., Mahnia M., Taherian R. On structural behavior of a funicular concrete polyhedralframe designed by 3D graphic statics. Structures. 2018;(14):56-68. https://doi.org/10.1016/j.istruc.2018.02.002
  20. Kholodar B.G. Determination of the stress-strain state of a farm using the Maxwell - Cremona diagram. Bulletin of the Brest State Technical University. Construction and architecture. 2016;1(97):39-42. (In Russ.) EDN YWUOCL
  21. Shishov I.I., Lisyatnikov M.S., Roshchina S.I., Lukina A.V. Covering of a single-storey industrial building withwide beams of box-shaped cross-section of stepwise variable height. Bulletin of the South Ural State University. Series: Construction and Architecture. 2021;21(1):22-29. (In Russ.) https://doi.org/10.14529/build210103
  22. van Sosin B., Rodin D., Sliusarenko H., Bartoň M., Elber G. The Construction of Conforming-to-shape Truss Lattice Structures via 3D Sphere Packing. CAD Computer-Aided Design. 2021;132:102962. https://doi.org/10.1016/j.cad.2020.102962

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».