Прогнозирование прочности коротких внецентренно сжатых круглых трубобетонных колонн
- Авторы: Кондратьева Т.Н.1, Чепурненко А.С.1, Языев Б.М.1
-
Учреждения:
- Донской государственный технический университет
- Выпуск: Том 21, № 3 (2025)
- Страницы: 231-241
- Раздел: Расчет и проектирование строительных конструкций
- URL: https://journal-vniispk.ru/1815-5235/article/view/325910
- DOI: https://doi.org/10.22363/1815-5235-2025-21-3-231-241
- EDN: https://elibrary.ru/TJJGKF
- ID: 325910
Цитировать
Полный текст
Аннотация
Исследован процесс прогнозирования несущей способности внецентренно сжатых круглых трубобетонных колонн (ТБК) с использованием алгоритмов машинного обучения. Актуальность работы обусловлена необходимостью повышения точности инженерных расчетов в условиях усложняющихся архитектурных решений. Цель исследования - разработка и оценка эффективности интеллектуальных моделей для надежного прогнозирования прочности ТБК на основе ключевых параметров конструкции и материалов. Объектом исследования выступили короткие внецентренно сжатые трубобетонные колонны круглого сечения. Входными параметрами моделей машинного обучения являлись наружный диаметр сечения колонны, толщина стенки трубы, прочность бетона, предел текучести стали и относительный эксцентриситет. В качестве выходного параметра принималась несущая способность колонны. Для прогнозирования использовались алгоритмы CatBoost и Random Forest Regressor (RFR) с оптимизацией гиперпараметров посредством библиотеки Optuna. Оценка качества моделей проводилась по метрикам MAE, MSE и MAPE. В результате исследования разработаны интеллектуальные модели. Модель CatBoost продемонстрировала лучшие показатели точности (MAE = 67,1; MSE = 86,2; MAPE = 0,07 %) по сравнению с RFR (MAE = 72,6; MSE = 89,7; MAPE = 0,15 %). Анализ важности признаков показал, что наибольшее влияние на несущую способность оказывают наружный диаметр колонны и относительный эксцентриситет. Корреляционный анализ подтвердил высокую зависимость выходного параметра от этих факторов. Полученные результаты рекомендуются к использованию в расчетных модулях и инженерных системах поддержки принятия решений при проектировании несущих конструкций зданий и сооружений.
Ключевые слова
Об авторах
Татьяна Николаевна Кондратьева
Донской государственный технический университет
Автор, ответственный за переписку.
Email: ktn618@yndex.ru
ORCID iD: 0000-0002-3518-8942
SPIN-код: 7794-2841
кандидат технических наук, доцент кафедры математики и информатики
Российская Федерация, 344003, г. Ростов-на-Дону, пл. Гагарина, 1Антон Сергеевич Чепурненко
Донской государственный технический университет
Email: anton_chepurnenk@mail.ru
ORCID iD: 0000-0002-9133-8546
SPIN-код: 7149-7981
доктор технических наук, профессор кафедры строительной механики и теории сооружений
Российская Федерация, 344003, г. Ростов-на-Дону, пл. Гагарина, 1Батыр Меретович Языев
Донской государственный технический университет
Email: ps62@yandex.ru
ORCID iD: 0000-0002-5205-1446
SPIN-код: 5970-5350
доктор технических наук, профессор кафедры строительной механики и теории сооружений
Российская Федерация, 344003, г. Ростов-на-Дону, пл. Гагарина, 1Список литературы
- Ilanthalir A., Regin J.J., Maheswaran J. Concrete-filled steel tube columns of different cross-sectional shapes under axial compression: A review. IOP Conference Series: Materials Science and Engineering; 2020 Sep 17-18; Tamil Nadu, India. Bristol: IOP Publ.; 2020:012007. https://doi.org/10.1088/1757-899X/983/1/012007 EDN: DMUHMU
- Joseph J.R., Henderson J.H. Concrete-filled steel tube truss girders - a state-of-the-art review. Journal of Engineering and Applied Science. 2023;70:49. https://doi.org/10.1186/s44147-023-00220-w EDN: PWRPVD
- Arokiaprakash A., Senthil Selvan S. Comprehensive study of compressive behavior of CFST columns with confinements and stiffeners. Journal of Constructional Steel Research. 2023;211:108127. https://doi.org/10.1016/j.jcsr.2023. 108127 EDN: SKHBUQ
- Wang C., Chan T.M. Machine learning (ML) based models for predicting the ultimate strength of rectangular concrete-filled steel tube (CFST) columns under eccentric loading. Engineering Structures. 2023;276:115392. https://doi.org/10.1016/j.engstruct.2022.115392 EDN: DIBHQH
- Zhang S., Li X., Chen X., Chen J. Behavior of circular-steel-tube-confined square CFST short columns under axial compression. Journal of Building Engineering. 2022;51:104372. https://doi.org/10.1016/j.jobe.2022.104372 EDN: KHGDBW
- Teng J.G., Wang J.J., Guan Lin, Zhang J., Feng P. Compressive behavior of concrete-filled steel tubular columns with internal high-strength steel spiral confinement. Advances in Structural Engineering. 2021;24(8):1687-708. https://doi.org/10.1177/1369433220981656 EDN: YFKXMK
- Yuan F., Cao L., Li H. Axial compressive behaviour of high-strength steel spiral-confined square concrete-filled steel tubular columns. Journal of Constructional Steel Research. 2022;192:107245. https://doi.org/10.1016/j.jcsr.2022.107245 EDN: AJTUWQ
- Hu H.S., Xu L., Guo Z.X., Shahrooz B.M. Behavior of eccentrically loaded square spiral-confined high-strength concrete-filled steel tube columns. Engineering Structures. 2020;216:110743. https://doi.org/10.1016/j.engstruct.2020.110743 EDN: RBSRZD
- Kondratieva T.N., Chepurnenko A.S., Poliakova K.A., Rodionov K.A. CatBoost algorithms to predict the load-bearing capacity of centrally compressed short CFST columns of circular cross-section. E3S Web of Conferences. 2024;583:06009. https://doi.org/10.1051/e3sconf/202458306009 EDN: YXISDV
- Kondratieva T.N., Vysokovskiy D.V., Rusakova E.V., Khashkhozhev K.A., Poliakova K.A. Modeling the strength of the walls of I-shaped reinforced concrete beams. International Conference on Recent Advances in Architecture and Construction. Cham: Springer Nature Switzerland; 2024. p. 385-392. https://doi.org/10.1007/978-3-031-82938-3_42
- Le T.T. Practical machine learning-based prediction model for axial capacity of square CFST columns. Mechanics of Advanced Materials and Structures. 2022;29(12):1782-1992. https://doi.org/10.1080/15376494.2020.1839608 EDN: LUHGDL
- Zhou X.G., Hou C., Feng W.Q. Optimized data-driven machine learning models for axial strength prediction of rectangular CFST columns. Structures. 2023;47:760-780. https://doi.org/10.1016/j.istruc.2022.11.030 EDN: RJEFIJ 0
- Cakiroglu C., Islam K., Bekdaş G., Isikdag U., Mangalathu S. Explainable machine learning models for predicting the axial compression capacity of concrete filled steel tubular columns. Construction and Building Materials. 2022;356:129227. https://doi.org/10.1016/j.conbuildmat.2022.129227 EDN: RDNJKT
- Wang D., Ren Z., Kondo G. Interpretable domain knowledge enhanced machine learning framework on axial capacity prediction of circular CFST columns. Journal Research Article: Computational Engineering, Finance, and Science. 2024. https://doi.org/10.48550/arXiv.2402.04405
- Megahed K., Mahmoud N.S., Abd-Rabou S.E.M. Prediction of the axial compression capacity of stub CFST columns using machine learning techniques. Scientific Reports. 2024;14:2885. https://doi.org/10.1038/s41598-024-53352-1 EDN: GANCNR
- Faridmehr I., Nehdi M.L. Predicting axial load capacity of CFST columns using machine learning. Structural Concrete. 2022;23:1642-1658. https://doi.org/10.1002/suco.202100641 EDN: BOSJKP
- Hakim S.J.S, Noorzaei J., Jaafar M.S., Jameel M., Mohammadhassani M. Application of artificial neural networks to predict compressive strength of high strength concrete. International Journal of Physical Sciences. 2011;6:975-981. https://doi.org/10.5897/IJPS11.023
- Luat N.V., Han S.W., Lee K. Genetic algorithm hybridized with eXtreme gradient boosting to predict axial compressive capacity of CCFST columns. Composite Structures. 2021;278:114733. https://doi.org/10.1016/j.compstruct.2021.114733 EDN: KPUGZL
- Zarringol M., Thai H., Thai S., Patel V. Application of ANN to the design of CFST columns. Structures. 2020;28:2203-2220. https://doi.org/10.1016/j.istruc.2020.10.048 EDN: CRVHBP
- Lee S.C Prediction of concrete strength using artificial neural networks. Engineering Structures. 2003;25(7):849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Chepurnenko A.S., Kondratieva T.N., Deberdeev T.R., Akopyan V.F., Avakov A.A. Prediction of rheological parameters of polymers using the CatBoost gradient boosting algorithm. Polymer Science, Series D. 2024;17(1):121-128. https://doi.org/10.1134/S199542122370020X EDN: UFJNYY
- Lee S., Vo T.P., Thai H.T, Lee J., Patel V. Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm. Engineering Structures. 2021;238:112109. https://doi.org/10.1016/j.engstruct.2021.112109 EDN: FTLKPF
- Ma Lu., Zhou Ch., Lee D., Zhang Ji. Prediction of axial compressive capacity of CFRP-confined concrete-filled steel tubular short columns based on XGBoost algorithm. Engineering Structures. 2022;260:114239. https://doi.org/10.1016/ j.engstruct.2022.114239 EDN: SEMQKN
- Hou C., Zhou X. G. Strength prediction of circular CFST columns through advanced machine learning methods. Journal of Building Engineering. 2022;51:104289. https://doi.org/10.1016/j.jobe.2022.104289 EDN: CQXMDK
- Vu Q.V., Truong V.H., Thai H.T. Machine learning-based prediction of CFST columns using gradient tree boosting algorithm. Composite Structures. 2021;259:113505. https://doi.org/10.1016/j.compstruct.2020.113505 EDN: HTWBNC
- Tran V.L., Thai D.K., Kim S.E. Application of ANN in predicting ACC of SCFST column. Composite Structures. 2019;228:111332. https://doi.org/10.1016/j.compstruct.2019.111332
- Du Y., Chen Z., Zhang C., Cao X. Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks. Frontiers of Computer Science. 2017;11:863-873. https://doi.org/10.1007/s11704-016-5113-6 EDN: KGWXVD
- Zarringol M., Thai H.T., Thai S., Patel V. Application of ANN to the design of CFST columns. Structures. 2020;28:2203-2220. https://doi.org/10.1016/j.istruc.2020.10.048 EDN: CRVHBP
- Chepurnenko A.S., Yazyev B.M., Turina V.S., Akopyan V.F. Artificial intelligence models for determining the strength of centrally compressed pipe-concrete columns with square cross-section. Magazine of Civil Engineering. 2024;17(6). https://doi.org/10.34910/MCE.130.8 EDN: HBBADX
- Chepurnenko A., Yazyev B., Meskhi B., Beskopylny A., Khashkhozhev K., Chepurnenko V. Simplified 2D finite element model for calculation of the bearing capacity of eccentrically compressed concrete-filled steel tubular columns. Applied Sciences. 2021;11:11645. https://doi.org/10.3390/app112411645 EDN: AKSSMM
- Khashkhozhev K.N. Improvement of the design of concrete-filled steel tube columns considering physical nonlinearity [dissertation]. 2023. (In Russ.)
- Ileri K. Comparative analysis of CatBoost, LightGBM, XGBoost, RF, and DT methods optimised with PSO to estimate the number of k-barriers for intrusion detection in wireless sensor networks. International Journal of Machine Learning and Cybernetics. 2025:1-20. https://doi.org/1007/s13042-025-02654-5
Дополнительные файлы
