Аналитическое и конечно-элементное моделирование при расчете и проектировании усилений растянутых элементов фиброармированными полимерами на основе высокопрочного волокна с применением клеевых соединений

Обложка

Цитировать

Полный текст

Аннотация

Предмет исследования. Анализ применимости и эффективности применения моделей различного уровня сложности для расчета и проектирования усиления растягиваемых элементов путем наклеивания на их поверхности полимеров на основе высокопрочных волокон. Цель исследования. Определение необходимого уровня сложности расчетной модели путем сравнения полученных на моделях различной сложности численных результатов в рамках упругого поведения материалов и анализ особенностей упругопластической работы в случае повышенной нагрузки. Материалы и методы. Рассматривается несколько относительно простых вариантов конструкции усиления высокопрочными волокнами с применением четырех конечно-элементных моделей (КЭ-моделей) различной сложности и аналитического подхода. В представленной серии численных экспериментов с применением ПК «ЛИРА» (СКАД) и FEMAP (NASTRAN) использовались двумерные и трехмерные КЭ-модели. Сравнение результатов упругого расчета различных КЭ-моделей с результатами, полученными с помощью аналитических выражений. Результаты расчета представлены в графической и табличной форме. Нелинейный анализ обнаруживает некоторые особенности поведения усиленных элементов при запредельных нагрузках. Результаты. Рассмотрено влияние различных факторов на работу клеевого соединения, применение уравнений и формул для расчета и проектирования. Результаты на основе аналитического подхода хорошо согласуются с результатами расчета методом конечных элементов (МКЭ). Расчеты МКЭ в физически нелинейной постановке обнаруживают некоторые особенности упругопластической работы соединений. Выводы. Все рассмотренные в статье КЭ-модели и приближенный аналитический подход в пределах упругого расчета дают близкие результаты. Наиболее экономичным по затратам усилий и времени на стадии предварительной оценки влияния различных параметров на работу узла в упругой стадии является аналитический подход. Применение МКЭ в упругой стадии целесообразно для уточнения результатов. Упрощенные плоские модели здесь достаточно надежны. Однако за пределами упругости материала усиливаемого элемента проявляются некоторые особенности НДС, не наблюдаемые в упругой стадии его нагружения и требующие особого внимания и уточненного расчета МКЭ.

Об авторах

Александр Иванович Данилов

Национальный исследовательский Московский государственный строительный университет

Автор, ответственный за переписку.
Email: alenk904@mail.ru

кандидат технических наук, доцент кафедры металлических и деревянных конструкций

Ярославское шоссе, 26, Москва, Российская Федерация, 129337

Иван Александрович Калугин

ПАО РКК «Энергия»

Email: kalugin_93@bk.ru

бакалавр, инженерконструктор

ул. Ленина, 4А, Королев, Московская область, Российская Федерация, 129337

Список литературы

  1. Ovchinnikov I.I., Ovchinnikov I.G., Chesnokov G.V., Tatiev D.A., Pokulaev D.V. (2014). Usileniye metallicheskich konstrukciy fibroarmirovannymi plastikami [Reinforcement of metal structures with fiber reinforced polymers]. Naukovedeniye, (3), 1-23. (In Russ.)
  2. Tusnin A.R., Schurov E.O. (2017). Eksperimentalnyje issledovanija kleevogo sojedinienija elementov iz stali i ugleplastikovych komposicionnych materialov [Experimental investigation of the glue joint between the steel element and carbon fiber reinforced polymers]. Promyshlennoje i grajdanskoje stroitelstvo, (7), 69-73. (In Russ.)
  3. Tusnin A.R., Schurov E.O. (2017). Eksperimentalnyje issledovanija stalnych elementov, usilennych ugleplastikovymi komposicionnymi materialami [Experimental investigation of the steel elements strengthened by the carbon fiber reinforced polymers]. Promyshlennoje i grajdanskoje stroitelstvo, (9), 25-29. (In Russ.)
  4. Danilov A.I. (2014). Kocepcija upravlenija processom razrushenija stroitelnogo objekta [The concept of the civil engineering object collapse process control]. Promyshlennoje i grajdanskoje stroitelstvo, (8), 74-77. (In Russ.)
  5. Tavakkolizadeh Saadatmanesh H. (2003). Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch. Journal of Structural Engineering, ASCE, (129), 186-196
  6. El-Tawil S., Ekiz E., Goel S., Chao S.-H. (2011). Retraining local and global buckling behavior of steel plastic hinges using CFRP. Journal of Constructional Steel Research, (67), 261-269
  7. Tsouvalis N.G., Mirisiotis L.S., Dimou D.N. (2009). Experimental and numerical study of the fatigue behaviour of composite patch reinforced cracked steel plates. International Journal of Fatigue, (31), 1613-1627.
  8. Shaat A., Schnerch D., Fam A., Rizkalla S. (2003). Retrofit of steel structures using fiber reinforced polymers (FRP): state-of-the-art. Centre for Integration of Composites into Infrastructure.
  9. Nguyen T.-C., Bai Y., Zhao X.-L., Al-Mahaidi R. (2011). Mechanical characterization of steel/CFRP double strap joints at elevated temperatures. Composite Structures, (93), 1604-1612
  10. Bocciarelli M., Colombi P., Fava G., Poggi C. (2009). Fatigue performance of tensile steel members strengthened with CFRP plates. Composite Structures, (87), 334-343.
  11. Liu H., Al-Mahaidi R., Zhao X. (2009). Experimental study of fatigue crack growth behavior in adhesively reinforced steel structures, Compos. Struct., 90, 12-20.
  12. Harries K.A., Peck A.J., Abraham E.J. (2009). Enhancing stability of structural steel sections using FRP. Thin-Walled Structure, 47, 1092-1101.
  13. Patnaik A.K., Bauer C.L. (2004). Strengthening of steel beams with carbon FRP laminates. Proceeding of the 4th Advanced Composites for Bridges and Structures Conference, Calgary, Canada.
  14. Colombi P., Bassetti A., Nussbaumer A. (2003). Analysis of cracked steel members reinforced by prestressed composite patch. Fatigue Fract. Eng. Mater. Struct., 26(1), 59-67
  15. Täljsten B., Hansen C.S., Schmidt J.W. (2009). Strengthening of old metallic structures in fatigue with prestressed and non-prestressed CFRP laminates. Construction and Building Materials, 23(4), 1665-1677.
  16. Ghafoori E., Motavalli M., Botsis J., Herwig A., Galli M. (2012). Fatigue strengthening of damaged metallic beams using prestressed unbonded and bonded CFRP plates. International Journal of Fatigue, 44, 303-315.
  17. Ghafoori E., Schumacher A., Motavalli M. (2012). Fatigue behavior of notched steel beams reinforced with bonded CFRP plates: determination of prestressing level for crack arrest. Engineering Structures, 45, 270-283
  18. Ghafoori E., Motavalli M. (2013). Flexural and interfacial behavior of metallic beams strengthened by prestressed bonded plates, Composite Structures, 101, 22-34.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».