Dynamics of formation of tolerance to blue (405 nm) led radiation in Staphylococcus aureus upon repeated exposure
- Autores: Tuchina E.S.1, Kanevsky M.V.1, El-Khih A.N.1, Slivina Y.I.1
-
Afiliações:
- Saratov State University
- Edição: Volume 24, Nº 2 (2024)
- Páginas: 196-201
- Seção: Biology
- URL: https://journal-vniispk.ru/1816-9775/article/view/357194
- DOI: https://doi.org/10.18500/1816-9775-2024-24-2-196-201
- EDN: https://elibrary.ru/EUHPDP
- ID: 357194
Citar
Texto integral
Resumo
Sobre autores
Elena Tuchina
Saratov State University83, Astrakhanskaya str., Saratov, 410012, Russia
Matvey Kanevsky
Saratov State University83, Astrakhanskaya str., Saratov, 410012, Russia
Ayya El-Khih
Saratov State University
ORCID ID: 0000-0003-1149-3966
83, Astrakhanskaya str., Saratov, 410012, Russia
Yulia Slivina
Saratov State University
ORCID ID: 0009-0003-1531-5451
83, Astrakhanskaya str., Saratov, 410012, Russia
Bibliografia
- Kussell E, Kishony R, Balaban N. Q., Leibler S. Bacterial persistence: A model of survival in changing environments // Genetics. 2005. Vol. 169. P. 1807–1814.
- Mahmoudi H., Bahador A., Pourhajibagher M., Alikhani M. Y. Antimicrobial photodynamic therapy: An effective alternative approach to control bacterial infections // J. Lasers Med. Sci. 2018. Vol. 9. P. 154–162. https://doi.org/10.15171/jlms.2018.29
- Youf R., Müller M., Balasini A., Thétiot F., Müller M., Hascoët A., Jonas U., Schönherr H., Lemercier G., Montier T. Antimicrobial photodynamic therapy: Latest developments with a focus on combinatory strategies // Pharmaceutics. 2021. Vol. 13. P. 1995–2016. https://doi.org/10.3390/pharmaceutics13121995
- Lipovsky A., Nitzan Y., Friedmann H., Lubart R. Sensitivity of Staphylococcus aureus strains to broadband visible light // Photochemistry and Photobiology. 2009. Vol. 85. P. 255–260.
- Бухарин О. В., Сгибнев А. В., Черкасов С. В., Иванов Ю. Б. Способ выявления у бактерий ингибиторов каталазы микроорганизмов. Патент РФ на изобретение № 2180353 от 10.03.2002.
- McKenzie G. J., Harris R. S., Lee P. L., Rosenberg S. M. The SOS response regulates adaptive mutation // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97. P. 6646–6651.
- Anderson K. L., Roberts C., Disz T., Vonstein V., Hwang K., Overbeek R., Olson P. D., Projan S. J., Dunman P. M. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover // J. Bacteriol. 2006. Vol. 188. P. 6739–6756.
- Galhardo R. S., Hastings P. J., Rosenberg S. M. Mutation as a stress response and the regulation of evolvability // Crit. Rev. Biochem. Mol. Biol. 2007. Vol. 42. P. 399–435.
- Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlinska J., Michel O., Kotowski K., Kulbacka J. Photodynamic therapy – mechanisms, photosensitizers and combinations // Biomed. Pharmacother. 2018. Vol. 106. P. 1098–1107.
- Pieranski M., Sitkiewicz I., Grinholc M. Increased photoinactivation stress tolerance of Streptococcus agalactiae upon consecutive sublethal phototreatments // Free Radic. Biol. Med. 2020. Vol. 160. P. 657–669.
- Guffey J. S., Payne W., Jones T., Martin K. Evidence of resistance development by Staphylococcus aureus to an in vitro, multiple stage application of 405 nm light from a supraluminous diode array // Photomed. Laser Surg. 2013. Vol. 31. P. 179–182.
- Amin R. M., Bhayana B., Hamblin M. R., Dai T. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies // Lasers Surg. Med. 2016. Vol. 48. P. 562–568.
- Massier S., Rince A., Maillot O., Feuilloley M. G., Orange N., Chevalier S. Adaptation of Pseudomonas aeruginosa to a pulsed light-induced stress // J. Appl. Microbiol. 2012. Vol. 112. P. 502–511.
- Grinholc M., Rodziewicz A., Forys K., RapackaZdonczyk A., Kawiak A., Domachowska A., Golunski G., Wolz C., Mesak L., Becker K. Antimicrobial photodynamic therapy with fulleropyrrolidine: Photoinactivation mechanism of Staphylococcus aureus, in vitro and in vivo studies // Appl. Microbiol. Biotechnol. 2015. Vol. 99. P. 4031–4043.
- Cieplik F., Späth A., Regensburger J., Gollmer A., Tabenski L., Hiller K. A., Bäumler W., Maisch T., Schmalz G. Photodynamic biofilm inactivation by SAPYR – an exclusive singlet oxygen photosensitizer // Free Radic. Biol. Med. 2013. Vol. 65. P. 477–487.
- Paronyan M. H., Koloyan H. O., Avetisyan S. V., Aganyants H. A., Hovsepyan A. S. Study of the possible development of bacterial resistance to photodynamic inactivation // Biol. J. Armen. 2019. Vol. 71. P. 17–22.
- Kashef N., Hamblin M. R. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? // Drug Resist. Updat. 2017. Vol. 31. P. 31–42.
- Al-Mutairi R., Tovmasyan A., Batinic-Haberle I., Benov L. Sublethal photodynamic treatment does not lead to development of resistance // Front. Microbiol. 2018. Vol. 9. P. 1699.
Arquivos suplementares

