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%% Abstract. We consider a model of an insurance portfolio that
includes both non-life and life annuity insurance while assuming
—~ 7 ﬁ that the surplus (or some of its fraction) is invested in risky
v assets with the price dynamics given by a geometric Brownian
HayL‘le“/l motion. The portfolio surplus (in the absence of investments) is
described by a stochastic process involving two-sided jumps and a
OTﬂ'eﬂ continuous drift. Downward jumps correspond to the claim sizes
and upward jumps are interpreted as random gains that arise
at the final moments of the life annuity contracts realizations
(i.e. at the moments of the death of policyholders). The drift is
b determined by the difference between premiums in the non-life

insurance contracts and the annuity payments. We study the ruin
problem for the model with investment using an approach based
on integrodifferential equations (IDE) for the survival probabilities
as a function of initial surplus. The main problem in calculating
the survival probability as a solution of the IDE is that the
initial value of the probability itself or its derivative at a zero
initial surplus is priori unknown. For the case of the exponential
distributions of the jumps, we propose a solution to this problem
based on the assertion that the problem for an IDE is equivalent
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to a problem for an ordinary differential equation (ODE) with some nonlocal condition added. As
a result, a solution to the original problem can be obtained as a solution to the ODE problem
with an unknown parameter, which is finally determined using the specified nonlocal condition
and a normalization condition.
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AnHoramusa. PaccmartprBaercs Mozesb CTPaxoBOro MOpT(esisi, BKIIOYAILIET0 PUCKOBOE CTPAXO-
BaHHEe U MOXH3HEHHBble aHHYHUTETHl B TPEAINOJNOXKEHUH, YTO pe3epB (KM HEKOTOpasi ero HoJsi)
UHBECTHPYETCS B PHUCKOBBIH aKTHB, NHHAMHKA LEHbl KOTOPOTO MOJAENHUPYETCs reoMeTPHUECKUM
OpOYHOBCKUM JIBH:KeHHeM. PesepB moprdessi (B OTCyTCTBHE WHBECTHULMH) OMUCHIBAETCS CTOXACTH-
YeCKHM IPOLEeCCOM, BKJIOYAIOIUM IBYCTOPOHHHE CKAYKH M HeNpepblBHBIA CHOC, NIPH 3TOM CKauyKH
BHHM3 COOTBETCTBYIOT pa3MepaM TpeOGOBaHHH, a CKauKH BBEPX MHTEPNPETHPYIOTCH KaK CaydaHHble
JOXOMIbI, BO3HUKAIOIIHME B (pHHAJIbHbIE MOMEHTHI peasjiu3aldid aHHYHUTETOB (T.e. B MOMEHTBI OKOH-
YaHHUs XKHU3HU cTpaxoBaTtesell). CHOC ompelesisieTcsi Pa3HOCTbIO MeXAY NMPEeMHUSIMU 110 PUCKOBOMY
CTPaxOBaHMIO U BBIIJIATAMH 10 aHHyuTeTaM. [Ipobsema pasopeHus B MOIEH C MHBECTHULHSMU
M3yuaeTcsi ¢ MOMOLILbIO MOAX0/A, OCHOBAHHOTO Ha HHTerpoauddepeHranbHbX ypaBHeHusax (MIAY)
17151 BEPOSITHOCTH Hepa3opeHHusl KaK (PyHKLUHH HadyaapHOTO pe3epBa. OCHOBHAs TPyOHOCTb MPH Bbl-
YUCJeHUH BEPOSITHOCTH HepasopeHHusi Kak perieHuss MY cocTout B TOM, 4TO HauajbHble 3HAUEHHUS
caMoil BepOSITHOCTH WJIM ee NMPOU3BOAHOM (T.e. NMPH HYJEBOM HauaJbHOM pe3epBe) arnpHOPHO B
o0l1eM cjaydae HeW3BeCTHbI. /s ciydasi SKCIOHEHIMAJIbHOrO pacnpeneseHus] CKAuKoB MpefJa-
raeTcsl pellleHHe AaHHOH MPo6JEeMBl, OCHOBAHHOE Ha YTBepPXKJIeHHH 00 IKBUBAJEHTHOCTH 3a[Jauu
nast MY 3anaue pnsi o6bIKHOBEHHOTO nU(depeHianbioro ypasuenuss (O1Y) npu nobaBaeHun
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HEKOTOPOTO HeJIOKaJbHOTO YCJIOBHSI. B pesysibTare NMpHMeHeHHs TaKOro MOAXOAA MOXKET ObITh
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KOTOPBIH B KOHEYHOM HTOTE OTpeNessieTCsl TP MCTO0JMb30BAHHH YKA3aHHOTO HEJIOKAJbHOTO YCJIOBHS
M YCJIOBHSI HOPMHUPOBKH.
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Introduction

A compound Poisson risk model involving two-sided jumps without investment, is
considered in [1,2]. In the context of ruin theory, the model can be interpreted as
the surplus process of a business enterprise or an insurance company that is subject
to random gains and losses. In [1], a Brownian perturbation is also added to this
process, and the asymptotic estimate for the probability of ruin is obtained under some
assumptions on the density functions of jumps. In [2] so-called Gerber — Shiu expected
discounted penalty function in the model with a continuous downward drift is studied.
The ruin problem for an insurance company having two business branches, life insurance
and non-life insurance, and investing its reserves into a risky asset with the price
dynamics given by a geometric Brownian motion, is investigated in [3]. In contrast
to the models considered in [1] and [2], in [3] the processes of receipt of claims and
random gains are modeled by two independent compound Poisson processes with different
intensities. One of these processes involves random claims in non-life insurance (negative
jumps), and the other process involves random gains in life insurance (positive jumps).

For the case of exponentially distributed jumps, it was shown in [3] that the survival
probability is a solution of an ordinary differential equation of the fourth order; moreover,
a power asymptotic representation for the survival probability as a solution of this
equation was obtained when the initial surplus tends to infinity. Note that the mentioned
asymptotic representation has an unknown multiplier and only gives an understanding
of how fast the survival probability tends to one. The main goal of the present paper
is to prove that the survival probability is a solution to a well-posed ODE problem
with boundary conditions and some nonlocal conditions. This makes possible not only a
qualitative but also a quantitative study of the survival probability in the future.

1. The model description and statement of the problem

We will consider an insurance portfolio that combines surpluses for two types
of insurance businesses: life and non-life insurance. We propose that the typical life
insurance contract for the policyholder is the life annuity with the subsequent transfer of
its property to the benefit of the insurance company. Non-life insurance contracts have
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the same structure as in the classical Cramer — Lundberg model. Then the total portfolio
surplus is of the form

Ni(t) N(t)
Ri=u+ Y Ci—> Zj+ct, t>0. (1)
i=1 j=1

Here R, is the total portfolio surplus at time ¢ > 0; w is the initial surplus, ¢ # 0 is the
difference between the premium rate in non-life insurance and the life annuity rate (or
the pension payments per unit of time), assumed to be deterministic and fixed. Ny () is
a homogeneous Poisson process with intensity A; > 0 that, for any ¢ > 0, determines
the number of random revenues up to the time ¢; C, (k = 1,2,...) are independent
identically distributed (i.i.d.) random variables (r.v.) with a distribution function G(z)
(G(0) =0, EC} =n < o0, m > 0) that determine the revenue sizes (premiums) and are
assumed to be independent of Ny(t). These random revenues arise at the final moments
of the life annuity contracts realizations. Further, N(¢) is a homogeneous Poisson process
with intensity A > 0 that, for any ¢ > 0, determines the number of claims up to the
time t; Zp (k = 1,2,...) are i.i.d. r.v. with a distribution function F(z) (F(0) = 0,
EZ, = m < 0o, m > 0) that determine the claim sizes and are assumed to be independent
of N(t). In addition, we assume that the processes of total premiums and total payments
are independent.

We also assume that a fraction « of the surplus is invested at the time ¢ into a risky
asset whose price follows a geometric Brownian motion dS; = uS,dt + 05;dB;, where p
is the stock return rate, o > 0 is the volatility, and B; is a standard Brownian motion
independent of N(t), Ny(t), C;’s and Z;’s. The fraction (1 —«) of the surplus is invested
in the risk-free asset whose price is governed by dP; = rP,dt, where r is the risk-iree
interest rate; we suppose that 0 <r < p.

Then the resulting surplus process X; is governed by the equation

dX; = [(ap+ (1 — @)r) dt + ao dw| X, + dRy, t>0, (2)

with the initial condition Xy = u, where R; is defined by (1).

Note that if 0 < a < 1, then the insurance company purchases the risky asset at a
cost of no more than its current surplus; if @ > 1, the insurance company borrows to
invest in the risky asset; and if a < 0, the insurance company shortsells the risky asset
to invest in the risk-free asset.

Denote by ¢(u) the survival probability: ¢(u) = P(X; > 0, t > 0). Let us change the
parameters of the assets as follows

a=apu+ (1 —a)r, b=ao, (3)

and introduce the following assumptions: (A1) b # 0; (A2) p:= 2a/b* > 1.

[f assumptions (A1) and (A2) are satisfied, then a corresponding asset portfolio
includes risky assets and the expected return on this portfolio is positive; moreover,
assumption (A2) excludes unreliable asset portiolios leading to bankruptcy with a
probability one (see [3]). Note that if assumptions (A1) and (A2) hold, then «
satisfies the conditions a # 0, = < a < a¥, where a= = [R — VR?+2r]/o < 0,
at =[R+VR?>+2r]/c >0, and R is a Sharp ratio, i.e., R= (u—r)/o.

If the survival probability ¢(u) for the process (2) belongs to the space C*(R,) of
twice continuously differentiable on (0, 00) functions, then the using of the Itd’s formula
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and the total probability formula leads to the IDE
(/20 (0) + a9 (0) = A [ot) = [t )| -
0
M fotw) = [Tt pac] o, uso. @
0

where a, b are defined in (3).

2. IDE and ODE problems in the case of the exponential
distributions of jumps: formulations and equivalence

In the following we will assume that all the jumps are exponentially distributed,
ie, F(r) =1—exp(—z/m), m >0, G(y) = 1 —exp(—y/n), n > 0. In this case, for
f € C*(R,), IDE (4) can be rewritten in the following form:

(6% /2)u’ f"(u)+(autc) f'(w) = ALf (u) = (S ) (W)] =M [f () = (J1n f) ()] = 0, u >0, (5)

where the operators J,,, Ji, : C[0,00) — C[0, 00), are defined as follows:

() /fu—a:eXP( z/m)d =—/ £(s) exp (—(u— s)/m)ds,  (6)
(Junf)(u / Flu+ ) exp (—y/n)d / F(s)exp(—(s —w)/m)ds.  (7)
Note that

(I f) () = [f(uw) = (S S) @] /m,  (Jinf) (W) = [(J1f)(w) = f(@)]/n. (8)

Denote by ¢ the left-hand side of the equation (5). Formally differentiating this
function two times, we compose a linear combination of g and its derivatives in such
a way as to eliminate the integral components. For this purpose, we use the relations
(8). If there is a solution to an equation (5) that belongs to C*(R,), then it also satisfies
the equation g(u) + (m — n)g'(u) — nmg”(u) = 0. The last equation is an ODE of the
following form (see also [3]):

quf””(u) + [c + (26 + a)u + —bZ(;Lm_nm) uz} 1" (u)+
+ [1)2 +2a—X— )\ + cn—m) + (° +a)(n - m>u - i UQ} " (u)+
mn mn 2mn
+ {a(n —m)tAm - dn e iu} f'(w)=0, u>0. 9)
mn mn

Our main goal here is to establish conditions under which the solution of ODE (9) is
also a solution of IDE(4) and determines the survival probability in the original problem.
Let us consider (formally at first) IDE (5) along with the conditions

Jim 1) < o0, (10
e < 0} Jim f(u) =0, (1)
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Tim ()] < o0, Jim[uf" ()] =0, (12)
Jirgof(u) =1, (13)

i 0] = 0, T (0] = 19
Oéf(u)\l, u€R+. (15)

Then, setting u — 0, we conclude that, for solutions of the IDE problem (5), (10)-(15)
the following nonlocal condition must be satisfied

cf' (40) — (A + Ap) f(+0) + % /0°° f(s)exp(—s/n)ds = 0. (16)

Theorem 1. A solution of ODE (9) that satisfies the conditions (10)-(15) is also
the solution of IDE (5) if and only if the nonlocal condition (16) is satisfied.

Prooif. The necessity, i.e., the fact that the solution to the IDE problems (5),
(10)—(15) satisfies the ODE (9), and the nonlocal condition (16) is obvious due to the
construction of the ODE and the reasoning above. Let us prove the sufficiency, namely,
that the solution of ODE problem (9), (10)-(15) which satisfies the condition (16), is
satisfying also the IDE (5).

Denote by h the left-hand side of the equation (5) where the function f is the solution
of ODE problem (9), (10)-(15) which satisfies the condition (16). Then, in view of ODE
(9) we have that the function h satisfies the equation

h(u) + (m —n)h'(u) — (mn)h"(u) = 0. (17)

Let us prove that h(u) = 0 using the formulated conditions (10)—(15) and (16). The
general solution of the equation (17) has the form

h(u) = Cre¥/™ + Che™/™ (18)

with arbitrary constants €, Cy. From the conditions (10), (12) we have
hH(l] h(u) = cf'(+0) — (A + A1) f(+0) + —/ f(s) exp*/"ds, (19)

then, in view of (16) and (18), the equality
Ci+Cy,y=0 (20)

is satisfied. By virtue of conditions (13), (14), it is easy to see that lim, oo (J1nf)(u) =1,
and
lim h(u) = —=(A+ A1) + X lim (J, f)(u) + Ay = =X+ X lim (J, f) (w).

U—00 U— 00 U—00

For f satisfying condition (15), the right-hand side of the last equation is a finite value,

therefore, C; = 0 in (18), and taking equality (20) into account, we obtain that h = 0.

Thus, f satisfies IDE (5). O
As a result, we have the following

Corollary 1. IDE problem (5), (10)-(15) and ODE problem (9), (10)-(16) are
equivalent.
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3. The survival probability as a solution of IDE and ODE problems

To establish a connection between a solution of the IDE problem and the survival
probability in the origin problem, we use the so-called sufficiency theorem (for other
models, see [4]).

Theorem 2. For the process (2), let the conditions (A1) and (A2) be [ulfilled with
a, b defined in (3). Suppose the IDE (5) has a twice continuously differentiable on
(0,00) solution f(u) subject to conditions (11), (13), and (15). Then f(u) = p(u), i.e.,
f(u) is the survival probability for the process (2) with the initial state w.

We omit the proof because it is similar to the proof of Theorem 3.1 in [4]. From
Theorem 2 and Corollary 1, we obtain the following obvious.

Corollary 2. For the process (2), let the conditions (A1) and (A2) be [ulfilled
with a, b defined in (3). Suppose there is a twice continuously differentiable on (0, 0)
solution f(u) to the ODE problem (9), (10)-(16). Then f(u) = p(u), i.e., f(u) is the
survival probability for the process (2) with the initial state u.

Proof of the existence of a solution to the ODE problem mentioned above is not
considered in this paper. For the case ¢ = 0, the existence and uniqueness of such
a solution to a similar problem is proved in [5]. In the next section, we present an
algorithm that allows us to obtain a solution to ODE problems (9), (10)-(16) with
nonlocal conditions by solving a boundary value problem for a third-order ODE under
the condition that a solution of this problem exists and is integrable at infinity function
(the existence of integrable at infinity solution to the third-order ODE follows from the
power asymptotics for the derivative of the survival probability satisiying this equation,

see [3]).

4. Algorithm for solving the ODE problem with nonlocal condition
by solving a boundary value problem for ODE with a reduced
order

Denote f’ = ¢ and reformulate the ODE (9) and the conditions (12) and (14) in
terms of the function . Then we have

2 2(m
%qu”’(u) + {c + (26 + a)u + bin=m) (;zmnm) uﬂ V" (u)+
+ {bQ +2a—A— X\ + cn = m) + (t° +a)(n — m)u — a u2} ' (u)+
mn mn 2mn
+[a(n—m) +ﬂi\21—)\1n—c_%u1 P(u) =0, u>0, (21)
T[] < oo, lim, [ur(u)] = 0 22)
lim [uh(u)] = 0, lim [u* (u)] = 0. (23)

Since the value of ¢(+0) = lim, ¢ |¢(u)| is not defined, we will consider (21)-(23)
as a parametric family of problems with the parameter ¢ (+0) = 1y, 0 < ¥y < co. Note
that the local condition (16) can be rewritten as

Af(0) = cp(40) + N\ /000 Y(s) exp(—s/n)ds. (24)
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Let 1; be an integrable at infinity solution to the ODE problem (21)-(23) with a fixed
parameter J(—FO) = @Zo > 0. Then the solution of the ODE problem (9), (10)-(16) can be
obtained through the following steps.

Step I: for the case ¢ > 0, to define F(0) from the condition (24) with function ¢

instead v; for the case ¢ < 0, we set f(0) =
Step 2: to calculate the function

Flw) = FO) + /O " J(s)ds. (25)

Step 3: to find f(o0) = lim,_,o f(u) from (25).

Step 4: to define the functions f(u) = f(u)/f(00), ¥(u) = ¥(u)/f(c0).

[t is clear that these functions are related by equality f’ = and relation (24), and
f is the solution of the ODE problem (9), (10)-(16). It is obviously that the unknown

value of the parameter ¢y = ¥(+0) can be found from the equality v = b/ f(c0).
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