Новый подход к формированию систем линейных алгебраических уравнений для решения обыкновенных дифференциальных уравнений методом коллокаций

Обложка

Цитировать

Полный текст

Аннотация

Реализован новый алгоритм численного решения одномерных задач Коши и уравнений Пуассона, основанный на методе коллокации и представлении решения в виде разложения по полиномам Чебышева. Предлагается вместо обычного подхода, заключающегося в слиянии всех известных условий — дифференциальных (само уравнение) и начальных/ граничных — в одну систему приближенных линейных алгебраических уравнений (СЛАУ), перейти к методике решения задачи в несколько отдельных этапов. Вначале выделяются спектральные коэффициенты, определяющие «общее» решение исходной задачи. По методу коллокации определяются интерполяционные коэффициенты производной решения, а тем самым и коэффициенты разложения самого решения (кроме начальных). На этом этапе выбор удачного базиса, обладающего дискретной ортогональностью, дает возможность применения весьма эффективных алгоритмов поиска искомых коэффициентов. Трудоемкость приведения матрицы СЛАУ к диагональной форме становится эквивалентной сложности умножения чебышевской матрицы коэффициентов на вектор правой части системы. Затем коэффициенты разложения самого решения (кроме первых одного--двух) получаются с помощью умножения известной трехдиагональной матрицы интегрирования (обратной по отношению к матрице дифференцирования Чебышева) на вектор интерполяционных коэффициентов производной. На последнем этапе учет начальных/граничных условий выделяет «частное» искомое решение, однозначно доопределяя недостающие коэффициенты искомого разложения.

Об авторах

Леонид Антонович Севастьянов

Российский университет дружбы народов (РУДН); Объединенный институт ядерных исследований

Россия, 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Константин Петрович Ловецкий

Российский университет дружбы народов (РУДН)

Россия, 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Дмитрий Сергеевич Кулябов

Российский университет дружбы народов (РУДН)

Россия, 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Список литературы

  1. Boyd J. P. Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover Books on Mathematics, 2013. 668 p.
  2. Mason J. C., Handscomb D. C. Chebyshev Polynomials. Chapman and Hall/CRC Press, 2002. 360 p. https://doi.org/10.1201/9781420036114
  3. Fornberg B. A Practical Guide to Pseudospectral Methods. New York : Cambridge University Press, 1996. 231 p. https://doi.org/10.1017/CBO9780511626357
  4. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes: The Art of Scientific Computing. 3rd ed. New York : Cambridge University Press, 2007. 1235 p.
  5. Shen J., Tang T., Wang L.-L. Spectral Methods: Algorithms, Analysis and Applications. Berlin ; Heidelberg : Springer, 2011. 472 p. (Springer Series in Computational Mathematics, vol. 41). https://doi.org/10.1007/978-3-540-71041-7
  6. Olver S., Townsend A. A Fast and Well-Conditioned Spectral Method // SIAM Review. 2013. Vol. 55, iss. 3. P. 462–489. https://doi.org/10.1137/120865458
  7. Chandrasekaran S., Gu M. Fast and Stable Algorithms for Banded Plus Semiseparable Systems of Linear Equations // SIAM Journal on Matrix Analysis and Applications. 2003. Vol. 25, iss. 2. P. 373–384. https://doi.org/10.1137/S0895479899353373
  8. Amiraslani A., Corless R. M., Gunasingam M. Differentiation matrices for univariate polynomials // Numerical Algorithms. 2020. Vol. 83, iss. 1. P. 1–31. https://doi.org/10.1007/s11075-019-00668-z
  9. Zhang X., Boyd J. P. Asymptotic coefficients and errors for Chebyshev polynomial approximations with weak endpoint singularities: Effects of different bases // Science China Mathematics. 2023. Vol. 66, iss. 1. P. 191–220. https://doi.org/10.1007/s11425-021-1974-x
  10. Boyd J. P., Gally D. H. Numerical experiments on the accuracy of the Chebyshev – Frobenius companion matrix method for finding the zeros of a truncated series of Chebyshev polynomials // Journal of Computational and Applied Mathematics. 2007. Vol. 205, iss. 1. P. 281–295. https://doi.org/10.1016/j.cam.2006.05.006
  11. Dutykh D. A Brief Introduction to Pseudo-spectral Methods: Application to Diffusion Problems. 2019. 55 p. URL: https://arxiv.org/pdf/1606.05432 (дата обращения: 30.05.2022).
  12. Dawkins P. Differential Equations. 2018. 524 p. URL: https://tutorial.math.lamar.edu/Classes/DE/DE.aspx (дата обращения: 30.05.2022).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».