On the issue of studying the structural and mechanical characteristics of bovine cancellous bone
- 作者: Parshina I.F.1, Ivanov D.V.1, Dol A.V.1, Vindokurov I.V.2, Bessonov L.V.1, Tashkinov M.A.2
-
隶属关系:
- Saratov State University
- Perm National Research Polytechnic University
- 期: 卷 25, 编号 2 (2025)
- 页面: 231-245
- 栏目: Mechanics
- URL: https://journal-vniispk.ru/1816-9791/article/view/356395
- DOI: https://doi.org/10.18500/1816-9791-2025-25-2-231-245
- EDN: https://elibrary.ru/QLRACF
- ID: 356395
如何引用文章
全文:
详细
作者简介
Irina Parshina
Saratov State University
ORCID iD: 0000-0003-0735-6934
SPIN 代码: 2267-9136
Astrahanskaya str., 83, Saratov, Russia
Dmitry Ivanov
Saratov State University
ORCID iD: 0000-0003-1640-6091
SPIN 代码: 4459-1094
Astrahanskaya str., 83, Saratov, Russia
Aleksander Dol
Saratov State University
ORCID iD: 0000-0001-5842-1615
SPIN 代码: 3881-2302
Astrahanskaya str., 83, Saratov, Russia
Iliya Vindokurov
Perm National Research Polytechnic University
ORCID iD: 0000-0002-1885-0404
SPIN 代码: 7586-3546
Scopus 作者 ID: 57927069100
Researcher ID: U-4415-2019
Russia, 614990, Perm, Komsomolskii av., 29
Leonid Bessonov
Saratov State University
ORCID iD: 0000-0002-5636-1644
SPIN 代码: 9022-8177
Scopus 作者 ID: 57204800512
Researcher ID: G-4699-2015
Astrahanskaya str., 83, Saratov, Russia
Mikhail Tashkinov
Perm National Research Polytechnic University
ORCID iD: 0000-0003-4660-0020
SPIN 代码: 7694-2129
Russia, 614990, Perm, Komsomolskii av., 29
参考
- Haseltine K. N., Chukir T., Smith P. J., Jacob J. T., Bilezikian J. P., Farooki A. Bone mineral density: Clinical relevance and quantitative assessment // Journal of Nuclear Medicine. 2021. Vol. 62, iss. 4. P. 446–454. https://doi.org/10.2967/jnumed.120.256180
- Park C. S., Kang S. R., Kim J. E., Huh K. H., Lee S. S., Heo M. S., Han J. J., Yi W. J. Validation of bone mineral density measurement using quantitative CBCT image based on deep learning // Scientific Reports. 2023. Vol. 13, iss. 1. Art. 11921. https://doi.org/10.1038/s41598-023-38943-8
- Toyras J., Nieminen M. T., Kroger H., Jurvelin J. S. Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently // Bone. 2002. Vol. 31, iss. 4. P. 503–507. https://doi.org/10.1016/s8756-3282(02)00843-8
- Haba Y., Lindner T., Fritsche A., Schiebenhofer A. K., Souffrant R., Kluess D., Skripitz R., Mittelmeier W., Bader R. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis // The Open Orthopaedics Journal. 2012. Vol. 6. P. 458–463. https://10.2174/1874325001206010458
- Бессонов Л. В., Кириллова И. В., Фалькович А. С., Иванов Д. В., Доль А. В., Коссович Л. Ю. Методология «Планирование – Моделирование — Прогнозирование» для предоперационного планирования в травматологии-ортопедии // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2024. Т. 24, вып. 3. С. 359–380. https://doi.org/10.18500/1816-9791-2024-24-3-359-380, EDN: IQBZWJ
- Rho J. Y., Hobatho M. C., Ashman R. B. Relations of mechanical properties to density and CT numbers in human bone // Medical Engineering & Physics. 1995. Vol. 17, iss. 5. P. 47–55. https://doi.org/10.1016/1350-4533(95)97314-f
- Ivanov D. V., Kirillova I. V., Kossovich L. Yu., Bessonov L. V., Petraikin A. V., Dol A. V., Ahmad E. S., Morozov S. P., Vladzymyrskyy A. V., Sergunova K. A., Kharlamov A. V. Influence of convolution kernel and beam-hardening effect on the assessment of trabecular bone mineral density using quantitative computed tomography // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2020. Т. 20, вып. 2. С. 205–219. https://doi.org/10.18500/1816-9791-2020-20-2-205-219, EDN: BFUICL
- Lu Y., Engelke K., Puschel K., Morlock M. M., Huber G. Influence of 3D QCT scan protocol on the QCT-based finite element models of human vertebral cancellous bone // Medical Engineering & Physics. 2014. Vol. 36, iss. 8. P. 1069–1073. https://doi.org/10.1016/j.medengphy.2014.05.001
- Giambini H., Dragomir-Daescu D., Nassr A., Yaszemski M. J., Zhao C. Quantitative computed tomography protocols affect material mapping and quantitative computed tomography-based finite-element analysis predicted stiffness // Journal of Biomechanical Engineering. 2016. Vol. 138, iss. 9. Art. 0910031. https://doi.org/10.1115/1.4034172
- Zhang A., Zhang S., Bian C. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method // Journal of the Mechanical Behavior of Biomedical Materials. 2018. Vol. 78. P. 321–328. https://doi.org/10.1016/j.jmbbm.2017.11.039
- Endo K., Yamada S., Todoh M., Takahata M., Iwasaki N., Tadano S. Structural strength of cancellous specimens from bovine femur under cyclic compression // PeerJ. 2016. Vol. 25, iss. 4. Art. e1562. https://doi.org/10.7717/peerj.1562
- Yu B., Zhao G. F., Lim J. I., Lee Y. K. Compressive mechanical properties of bovine cortical bone under varied loading rates // Proceedings of the Institution of Mechanical Engineers, Part H. 2011. Vol. 225, iss. 10. P. 941–947. https://doi.org/10.1177/0954411911415470
- Arnold E. L., Clement J., Rogers K. D., Garcia-Castro F., Greenwood C. The use of CT and fractal dimension for fracture prediction in osteoporotic individuals // Journal of the Mechanical Behavior of Biomedical Materials. 2020. Vol. 103. Art. 103585. https://doi.org/10.1016/j.jmbbm.2019.103585
- Öhman-Mägi C., Holub O., Wu D., Hall R. M., Persson C. Density and mechanical properties of vertebral trabecular bone-A review // JOR Spine. 2021. Vol. 4, iss. 4. Art. e1176. https://doi.org/10.1002/jsp2.1176
- Mosekilde L., Bentzen S. M., Ortoft G., Jørgensen J. The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density // Bone. 1989. Vol. 10, iss. 6. P. 465–470. https://doi.org/10.1016/8756-3282(89)90080-x
- Bessonov L. V., Golyadkina A. A., Dmitriev P. O., Dol A. V., Zolotov V. S., Ivanov D. V., Kirillova I. V., Kossovich L. Y., Titova Yu. I., Ulyanov V. Yu., Kharlamov A. V. Constructing the dependence between the Young’s modulus value and the Hounsfield units of spongy tissue of human femoral heads // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2021. Т. 21, вып. 2. С. 182–193. https://doi.org/10.18500/1816-9791-2021-21-2-182-193, EDN: SNBJNB
- Islam M., Zunair H., Mohammed N. CosSIF: Cosine similarity-based image filtering to overcome low inter-class variation in synthetic medical image datasets // Computers in Biology and Medicine. 2024. Vol. 172. Art. 108317. https://doi.org/10.1016/j.compbiomed.2024.108317
- Zhao S., Arnold M., Ma S., Abel R. L., Cobb J. P., Hansen U., Boughton O. Standardizing compression testing for measuring the stiffness of human bone // Bone & Joint Research. 2018. Vol. 7, iss. 8. P. 524–538. https://doi.org/10.1302/2046-3758.78.BJR-2018-0025.R1
- Keaveny T. M., Borchers R. E., Gibson L. J., Hayes W. C. Theoretical analysis of the experimental artifact in trabecular bone compressive modulus // Journal of Biomechanics. 1993. Vol. 26, iss. 4–5. P. 599–607. https://doi.org/10.1016/0021-9290(93)90021-6
- Currey J. D. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone // Journal of Biomechanics. 1988. Vol. 21, iss. 2. P. 131–139. https://doi.org/10.1016/0021-9290(88)90006-1
- Nazarian A., von Stechow D., Zurakowski D., Müller R., Snyder B. D. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis // Calcified Tissue International. 2008. Vol. 83, iss. 6. P. 368–379. https://doi.org/10.1007/s00223-008-9174-x
- Hodgskinson R., Currey J. D. The effect of variation in structure on the Young’s modulus of cancellous bone: A comparison of human and non-human material // Proceedings of the Institution of Mechanical Engineers, Part H. 1990. Vol. 204, iss. 2. P. 115–121. https://doi.org/10.1243/PIME_PROC_1990_204_240_02
补充文件


