Dynamic Anisotropy-Based Controller Design for Time-Invariant Systems with Multiplicative Noise
- Authors: Yurchenkov A.V1
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Issue: No 1 (2025)
- Pages: 30-39
- Section: Analysis and Design of Control Systems
- URL: https://journal-vniispk.ru/1819-3161/article/view/351155
- ID: 351155
Cite item
Full Text
Abstract
About the authors
A. V Yurchenkov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Author for correspondence.
Email: alexander.yurchenkov@yandex.ru
Moscow, Russia
References
- Astrom, K.J. Introduction to Stochastic Control Theory. – Academic Press, 1970. – 322 p.
- Zames, G. Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses // IEEE Transactions on Automatic Control. – 1981. – Vol. 26, no. 2. – P. 301–320.
- Haddad, W.M., Bernstein, D.S., Mustafa, D. Mixed-Norm H2/H∞ Regulation and Estimation: The Discrete-Time Case // Systems & Control Letters. – 1991. – Vol. 16, no. 4. – P. 235–247.
- Zhou, K., Glover, K., Bodenheimer, B., Doyle, J. Mixed H2 and H∞ Performance Objectives I: Robust Performance Analysis // IEEE Transactions on Automatic Control. – 1994. – Vol. 38. – P. 1564–1574.
- Khargonekar, P.P., Rotea, M.A., Baeyens, E. Mixed H2/H∞ Filtering // International Journal of Robust and Nonlinear Control. – 1996. – Vol. 6. – P. 313–330.
- Scherer, C.W. Mixed H2/H∞ Control. – Springer-Verlag, 1995. – 216 p.
- Semyonov, A.V., Vladimirov, I.G., Kurdyukov, A.P. Stochastic Approach to H∞–optimization // Proceedings of the 33rd Conference on Decision and Control. – 1994. – P. 2249–2250.
- Владимиров И.Г., Курдюков А.П., Семенов А.В. Анизотропия сигналов и энтропия линейных стационарных систем // Доклады РАН. – 1995. – Т. 342, № 5. – С. 583–585. [Vladimirov, I.G., Kurdyukov, A.P., Semyonov, A.V. Anisotropy Signals and the Entropy of Linear Stationary Systems // Doklady Mathematics. – 1995. – Vol. 51, no. 3. – P. 388–390.]
- Владимиров И.Г., Даймонд Ф., Клоеден П.Е. Анизотропийный анализ робастного качества линейных нестационарных дискретных систем на конечном временном интервале // Автоматика и телемеханика. – 2006. – № 8. – С. 92–111. [Vladimirov, I.G., Diamond, P., Kloeden, P. Anisotropy–based Robust Performance Analysis of Finite Horizon Linear Discrete Time Varying Systems // Automation and Remote Control. – 2006. – Vol. 67, no. 7. – P. 1265–1282.]
- Vladimirov, I.G., Kurdyukov, A.P., Semyonov, A.V. On Computing the Anisotropic Norm of Linear Discrete-time-invariant Systems // Proceedings of 13th IFAC World Congr. – San Francisco, 1996. – P. 179–184.
- Kustov, A.Yu. State-Space Formulas for Anisotropic Norm of Linear Discrete Time Varying Stochastic System // Proceedings of 15th Int. Conf. on Electr. Eng., Comp. Science and Autom. Control. – Porto, 2018. – P. 1–6.
- Юрченков А.В., Кустов А.Ю., Курдюков А.П. Условия ограниченности анизотропийной нормы системы с мультипликативными шумами // Доклады Академии наук. – 2016. – Т. 467, № 4. – С. 396–399. [Yurchenkov, A.V., Kustov, A.Yu, Kurdyukov, A.P. Anisotropy-based Bounded Real Lemma for Discrete-Time Systems with Multiplicative Noise // Doklady Mathematics. – Vol. 93, no. 2. – P. 238–240.]
- Юрченков А.В. Синтез анизотропийного управления для линейной дискретной системы с мультипликативными шумами // Известия РАН. Теория и системы управления. – 2018. – № 6. – С. 33–44. [Yurchenkov, A.V. Anisotropy-Based Controller Design for Linear Discrete-Time Systems with Multiplicative Noise // Journal of Computer and Systems Sciences Int. – 2018. – Vol. 57, no. 6. – P. 864–873.]
- Won, M. and Ranade, G. Control of systems with multiplicative observation noise // Proceedings of the 62nd IEEE Conference on Decision and Control. – Singapore, 2023. – P. 3950–3955.
- Lu, C., Lu, X., Wang, H., et al. Control for Multiplicative Noise Systems with Packet Dropouts and Multiple Delays // Proceedings of the 40th Chinese Control Conference. – Shanghai, 2021. – P. 1544–1549.
- Belov, I.R., Yurchenkov, A.V., Kustov, A.Yu. Anisotropy-Based Bounded Real Lemma for Multiplicative Noise Systems: The Finite Horizon Case // Proceedings of the 27th Med. Conf. on Control and Automation. – Akko, 2019. – P. 148–152.
- Kustov, A.Yu., Timin, V.N., Yurchenkov, A.V. Boundedness Condition for Anisotropic Norm of Linear Discrete Time-invariant Systems with Multiplicative Noise // Journal of Physics: Conference Series. – 2021. – Vol. 1864. – Art. no. 012068.
- Yurchenkov, A.V., Kustov, A.Yu., Timin, V.N. The Sensor Network Estimation with Dropouts: Anisotropy-Based Approach // Automatica. – 2023. – Vol. 151. – Art. no. 110924.
- Юрченков А.В. Настройка сети датчиков с отказами на основе анизотропийного критерия // Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия Естественные науки. – 2023. – № 1. – С. 45–63. [Yurchenkov, A.V. Default Sensor Network Setup based on the Anisotropic Criterion // Herald of the Bauman Moscow State Technical University, Series Natural Sciences. – 2023. – Vol. 106, no. 1. – P. 45–63. (In Russian)]
- Gahinet, P. Explicit controller formulas for LMI-based H∞ synthesis // Automatica. – 1996. – Vol. 32. – P. 1007–1014.
- Diamond, P., Vladimirov, I.G., Kurdyukov, A.P., Semyonov, A.V. Anisotropy-Based Performance Analysis of Linear Discrete Time Invariant Control Systems // International Journal of Control. – 2001. – Vol. 74, no. 1. – P. 28–42.
- Diamond, P., Kloeden, P., Vladimirov, I.G. Mean Anisotropy of Homogeneous Gaussian Random Fields and Anisotropic Norms of Linear Translation-Invariant Operators on Multidimensional Integer Lattices // Journal of Applied Mathematics and Stochastic Analysis. – 2003. – Vol. 16, no.3. – P. 209–231.
- Владимиров И.Г., Курдюков А.П., Семенов А.В. Стохастическая проблема H∞-оптимизации. // Доклады РАН. – 1995. – Т. 343, № 5. – С. 607–609. [Vladimirov, I.G., Kurdyukov, A.P., Semyonov, A.V. The Stochastic Problem of H∞- Optimization // Doklady Mathematics. – 1995. – Vol. 52. – P. 155–157.]
- Юрченков А.В. Условие ограниченности анизотропийной нормы для стационарных систем с мультипликативнымишумами // Проблемы управления. – 2022. – № 5. – С. 16–24. [Yurchenkov, A.V. An Anisotropy-Based Boundedness Criterion for Time-Invariant Systems with Multiplicative Noises // Control Sciences. – 2022. – No. 5. – P. 13–20.]
- Scherer, C.W., Gahinet, P., Chilali, M. Multiobjective Output-Feedback Control via LMI Optimization // IEEE Transactions on Automatic Control. – 1997. – Vol. 42. – P. 896–911.
- Toffner-Clausen, S. System Identification and Robust Control: A Case Study Approach. – Berlin: Springer-Verlag, 1996. – 311 p.
- Lofberg, J. YALMIP: A Toolbox for Modeling and Optimization in MATLAB // Proceedings of the 2004 IEEE International Conference on Robotics and Automation. – New Orleans, 2004. – P. 284–289.
- Sturm, J.F. Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over Symmetric Cones // Optimization Methods and Software. – 1999. – Vol. 11. – P. 625–653.
- Boyd, S., Vandenberghe, L. Convex Optimization. – Cambridge: Cambridge University Press, 2004. – 730 p.
- Чайковский М.М. Синтез анизотропийных регуляторов методами выпуклой оптимизации и полуопределенного программирования // Управление большими системами. – 2013. – Вып. 42. – С. 100–152. [Tchaikovsky, M.M. Synthesis of Anisotropic Controllers via Convex Optimization and Semidefinite Programming // Large-Scale Systems Control. – 2013. – Iss. 42. – P. 100–152. (In Russian)]
Supplementary files




