No 1 (2025)

Surveys

Unmanned Vehicles: A Survey of Modern Simulators

Makarov M.I., Korgin N.A., Pyzh’yanov A.A.

Abstract

This survey is devoted to popular simulators supporting rough terrain for unmanned vehicles, namely, Gazebo, CARLA, AirSim, NVIDIA Isaac Sim, and Webots. Their main capabilities related to terrain modeling, motion physics, and support for sensors and weather conditions are described. Particular attention is paid to the creation of realistic rough terrain scenes, the complexity of importing real maps, and interaction with other software platforms, such as Robot Operating System (ROS) and artificial intelligence (AI) systems. The main drawbacks of each simulator are analyzed: the labor intensity of creating detailed terrain and vehicle models, the high complexity of integrating real maps, and the dependence on powerful hardware. The survey also notes the complexity of interaction with various software solutions and the required knowledge of 3D modeling. Gazebo and Webots are remarkable for their good integration with ROS but require more effort to work with rough terrain. CARLA and AirSim provide high-quality visualization but have higher requirements for creating landscapes. NVIDIA Isaac Sim stands out for AI simulation support but is resource-intensive. The authors’ experience in mapping vehicle trajectories and orienting in some simulators is presented.
Control Sciences. 2025;(1):3-15
pages 3-15 views

Mathematical Problems of Control

Polynomial Regression of Expert Estimates of Complex Quality

Zot’ev D.B., Makhin A.A.

Abstract

The multicriteria ranking problem of objects with several useful qualities is considered. Relating to the field of multicriteria optimization, this problem also arises when management decisions are chosen among several alternatives. The goal of this study is to develop a solution method based on calculating complex (generalized mean) quality indicators that represent polynomials from the class of normalized mean functions. The latter belong to strictly monotonic, shift-invariant aggregation operators. Such polynomials are called SPs for short. For example, the weighted arithmetic mean indicators of complex quality are SPs of degree 1. Apparently, SPs have all the properties of such linear functions that are essential for multicriteria ranking. Within the method presented, called the interactive approximation of expert estimates, we SPs of arbitrary degree for calculating complex quality indicators. This approach is similar to the expert-statistical method for determining weights. It provides the best root-mean-square approximation of any number of expert estimates, reducing their uncertainty and increasing their mutual consistency during the expertise procedure. The SPs of degrees 1, 2, and 3 are described below. The interactive approximation method of expert estimates is tested for SPs of degree 2 in the problem of calculating a complex quality indicator for smartphones ranked by seven partial qualities.
Control Sciences. 2025;(1):16-29
pages 16-29 views

Analysis and Design of Control Systems

Dynamic Anisotropy-Based Controller Design for Time-Invariant Systems with Multiplicative Noise

Yurchenkov A.V.

Abstract

This paper considers a linear discrete time-invariant system with multiplicative noise and a control input under an external disturbance from a special class. The plant’s dynamics are described in the state space. The class of external disturbances contains a set of stationary Gaussian sequences with a bounded mean anisotropy. The anisotropic norm of the closed-loop control system is chosen as the performance criterion. It is required to design a dynamic link-based control scheme under which the anisotropic norm of the closed-loop control system will be bounded by the minimum possible threshold. At the first stage of solving this problem, the controller’s dynamics are written out and the plant under consideration is augmented. The boundedness criterion of the anisotropic norm in terms of matrix inequalities is used to derive sufficient conditions for the existence of a solution of a convex optimization problem to minimize the upper bound of the anisotropic norm. A special change of variables is performed in the resulting inequalities to eliminate the nonlinear dependence on the unknown controller matrices. After a linearizing inversible change of variables, the optimization problem is solved numerically using standard methods. At the last stage, the desired controller matrices are calculated in the state space to ensure the bounded anisotropic norm of the closed-loop control system.
Control Sciences. 2025;(1):30-39
pages 30-39 views

Control in Social and Economic Systems

On Coalitional Rationality in a Three-Person Game

Zhukovskiy V.I., Zhukovskaya L.V., Smirnova L.V., Vysokos M.I.

Abstract

To determine the solution of any game in mathematical game theory, it is necessary to establish what behavior of the players should be considered optimal. In noncooperative games (games without coalitions), the concept of optimality is related, e.g., to the concepts of Nash and Berge equilibria. Optimality in the theory of cooperative games is characterized by the conditions of individual and collective rationality. This paper considers a three-person cooperative game in normal form. For this game, the concept of coalitional rationality is introduced by embracing the conditions of individual and collective rationality with some combination of the concepts of Nash and Berge equilibria. Sufficient conditions are established under which the game has a coalitional equilibrium of this type. In addition, the existence of such a solution in mixed strategies is proved in the case of continuous payoff functions and compact strategy sets of players.
Control Sciences. 2025;(1):40-45
pages 40-45 views

Information Technology in Control

Constructing Scientific Publication Profiles Based on Texts and Coauthorship Connections (in the Field of Control Theory and Its Applications)

Gubanov D.A., Melnichuk V.S.

Abstract

The calculation of scientific publication profiles is crucial in the systematization of scientific knowledge and support for scientific decision-making. This paper proposes a method for forming publication profiles in the field of control theory, based on the integration of text analysis and coauthorship network analysis. We describe a basic algorithm that analyzes publication texts by a thematic classifier as well as its enhanced version that considers network connections within a heuristic approach. The methods are examined using expert assessments and quantitative metrics; according to the examination results, combining textual and network data significantly improves the accuracy of publication profiles. Hypotheses about a relationship between the thematic similarity and network proximity of publications are tested, and the approach proposed is validated accordingly. In addition, directions for further research are identified.
Control Sciences. 2025;(1):46-52
pages 46-52 views

Chronicle

32nd International Conference on Problems of Complex Systems Security Control

Shelkov A.B.

Abstract

The conference took place in November 2024. Scientific results presented by the conference participants are briefly described below. The conference included the following sections: general theoretical and methodological issues of security support; problems of economic and sociopolitical security support; problems of information security support; cybersecurity and security aspects in social networks; ecological and technogenic security; modeling and decision-making for complex systems security control; automatic systems and means of complex systems security support. Special attention was paid to the theoretical and applied problems of improving the effectiveness of Russia’s national economic, information, and technogenic security management processes. In total, 104 authors from 33 organizations presented 73 papers at the conference.

Control Sciences. 2025;(1):53-59
pages 53-59 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».