UPPER BOUNDS ON TRAJECTORY DEVIATIONS FOR AN AFFINE FAMILY OF DISCRETE-TIME SYSTEMS UNDER EXOGENOUS DISTURBANCES

封面

如何引用文章

全文:

详细

We propose a simple upper bound on trajectory deviations for an affine family of discrete-time systems under nonzero initial conditions subjected to bounded exogenous disturbances. It involves the design of a parametric quadratic Lyapunov function for the system. The apparatus of linear matrix inequalities and the method of invariant ellipsoids are used as technical tools. The original problem is reduced to a parametric semidefinite programming problem, which is easily solved numerically. Numerical simulation results demonstrate the relatively low conservatism of the upper bound. This paper continues the series of our previous publications on estimating trajectory deviations for linear continuous- and discrete-time systems with parametric uncertainty and exogenous disturbances. The results presented below can be extended to various robust formulations of the original problem and also the problem of minimizing trajectory deviations for an affine family of discrete-time control systems under exogenous disturbances via linear feedback.

作者简介

M. Khlebnikov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: khlebnik@ipu.ru

Ya. Kvinto

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: yanakvinto@mail.ru

参考

  1. Поляк Б.Т., Тремба А.А., Хлебников М.В. и др. Большие отклонения в линейных системах при ненулевых начальных условиях // Автоматика и телемеханика. - 2015. - № 6. - С. 18-41.
  2. Квинто Я.И., Хлебников М.В. Верхние границы максимального отклонения траектории в линейных дискретных системах: робастная постановка // Управление большими системами. - 2019. - Вып. 77. - С. 70-84. - DOI: https://doi.org/10.25728/ubs.2019.77.4.
  3. Канатников А.Н. Локализующие множества и поведение траекторий неавтономных систем // Дифференциальные уравнения. - 2019. - Т. 55, № 11. - С. 1465-1475.
  4. Крищенко А.П. Поведение траекторий автономных систем // Дифференциальные уравнения. - 2018. - Т. 54, № 11. - С. 1445-1450.
  5. Канатников А.Н. Об эффективности функционаьного метода локализации // Дифференциальные уравнения. - 2020. - Т. 56, № 11. - С. 1433-1438.
  6. Канатников А.Н., Крищенко А.П. Функциональный метод локализации и принцип инвариантности Ла-Салля // Математика и математическое моделирование. - 2021. - № 1. - С. 1-12.
  7. Поляк Б.Т., Щербаков П.С. Робастная устойчивость и управление. - М.: Наука, 2002. - 303 c.
  8. Хлебников М.В., Квинто Я.И. Параметрическая функция Ляпунова для дискретных систем управления с внешними возмущениями: анализ // Проблемы управления. - 2021. - № 4. - С. 21-26. - DOI: http://doi.org/10.25728/pu.2021.4.2.
  9. Geromel, J.C., De Oliveira, M.C., Hsu, L. LMI Characterization of Structural and Robust Stability // Linear Algebra and Its Applications. - 1998. - Vol. 285. - P. 69-80.
  10. Ramos, D.C.W., Peres, P.L.D. A Less Conservative LMI Condition for the Robust Stability of Discrete-Time Uncertain Systems // Systems & Control Letters. - 2001. - Vol. 43. - P. 371-378.
  11. De Oliveira, M.C., Bernussou, J., Geromel, J.C. A New Discrete-Time Robust Stability Condition // Systems & Control Letters. - 1999. - Vol. 37. - P. 261-265.
  12. Deaecto G.S., Geromel J.C. Stability and Performance of Discrete-Time Switched Linear Systems // Systems & Control Letters. - 2018. - Vol. 118. - P. 1-7.
  13. Egidio L.N., Deaecto G.S., Geromel J.C. Limit Cycle Global Asymptotic Stability of Continuous-Time Switched Affine Systems // IFAC-PapersOnLine. - 2020. - Vol. 53, No. 2. - P. 6121-6126.
  14. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V. Linear Matrix Inequalities in Systems and Control Theory. - Philadelphia: SIAM, 1994. - 212 p.
  15. Баландин Д.В., Коган М.М. Синтез законов управления на основе линейных матричных неравенств. - М.: Физматлит, 2007. - 280 с.
  16. Grant, M., Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. - URL: http://cvxr.com/cvx/.

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».