编号 2 (2025)

Surveys

Technical Condition Monitoring Methods to Manage the Redundancy of Systems. Part I: Built-in Control and Partition into Classes

Bukov V., Bronnikov A., Popov A., Shurman V.

摘要

Redundancy management of a technical system involves a monitoring procedure (control of the current state of its components) to reconfigure the system and improve the performance and autonomy of its application. This paper initiates a four-part survey of the state-of-the-art monitoring methods for redundancy management. Part I is mainly devoted to the analysis of voting schemes, fidelity rules, control codes, and program control, representing the most widespread monitoring methods in modern technical systems and built-in control. In addition, we examine long-known, albeit less common, monitoring methods: diagnosis with partition into classes and diagnosis based on algebraic invariants.
Control Sciences. 2025;(2):3-13
pages 3-13 views

Solving Complex Resource Management Problems: From Classical Optimization and Game Theory to Multi-Agent Technologies for Reaching Consensus

Leonidov A., Skobelev P.

摘要

Challenges and complex problems arising in the resource management of modern enterprises are considered. The existing resource planning models, methods and tools for enterprises are reviewed, and new requirements for adaptive multicriteria resource planning in real time are presented. The concept of autonomous artificial intelligence (AI) systems for adaptive resource planning based on multi-agent technologies is discussed. The evolution of the approach to solving complex resource management problems is described: from traditional optimization of a single objective function, ignoring the individual interests of participants, to game theory with their competition and cooperation. The approach to finding and maintaining a competitive equilibrium (consensus) between participants is further developed via conflict identification and negotiations for conflict resolution with mutual trade-offs. A basic model of a multi-agent demand-supply network with a virtual market and a compensation method for reaching consensus for adaptive resource planning are presented. The functionality and architecture of intelligent adaptive resource planning systems are considered. The implementation results of AI solutions for industrial applications are provided, and the possibility of improving the effectiveness of resource usage by enterprises is shown. Finally, the lessons learned from the experience in R&D work and the prospects of this approach are discussed.
Control Sciences. 2025;(2):14-26
pages 14-26 views

Mathematical Problems of Control

How Does the Internal Structure of a Complex System Influence Its Overall Risk? Risk Minimization for Trees

Shiroky A., Kalashnikov A.

摘要

The Defender–Attacker problem is often employed as a mathematical framework in risk management. In this problem, the above players with opposite goals allocate limited resources to system elements to minimize or maximize a risk function. It has been well-studied under the assumption of independent system elements. However, in complex systems, elements interact, causing significant differences between the measured and predicted risks. Although models with the interdependence of system elements are regularly considered in the literature, no comprehensive understanding has been formed of how the structure of a complex system influences its overall risk. We address this issue in a series of papers by investigating system structures of increasing complexity. Chains and stars have been analyzed previously; in this paper, the findings are extended to arbitrary trees. We optimize the placement of elements within a tree to minimize risk; derive upper bounds for the relative error of an approximate algorithmic solution of this problem for trees with a few branches and leaves; and explore the dynamics of these bounds when increasing the number of leaves and branches. As demonstrated, the resulting upper bounds do not exceed their counterparts for stars from the previous works.
Control Sciences. 2025;(2):27-37
pages 27-37 views

Analysis and Design of Control Systems

A Fault Diagnosis Method for Discrete-Event Systems Based on the Fuzzy Finite State Automaton Model

Shumsky A., Zhirabok A.

摘要

This paper considers the problem of fault diagnosis in critical-purpose discrete-event systems described by the fuzzy finite state automaton (FSA) model. A solution method involving the mathematical apparatus of fuzzy logic is proposed. Fuzzy logic operations are described, and the concept of the determinizer of a fuzzy FSA is introduced. A diagnosis scheme that forms a structured residual vector is given. This scheme contains several channels (according to the number of possible faults in the system). Each channel is based on an observer, i.e., a determinizer of a special fuzzy FSA that simultaneously considers the possibility of both correct and incorrect transitions of the automaton (the normal operation of the system and the occurrence of a system fault, respectively). Another part of the channel is the decision block. Some ways to design the observer and the decision block are proposed. The features of the solution method are illustrated on the example of error monitoring for human operators in IT systems.
Control Sciences. 2025;(2):38-49
pages 38-49 views

Control in Social and Economic Systems

Constructing the CES Production Function Based on the Discrete Weibull Distribution

Kokov V., Sokolyanskiy V.

摘要

This paper considers a probabilistic approach to obtaining the CES production function. It consists in calculating the mean and median of the Leontief function (the quantity of output) as a random variable depending on the capacities of production factors, i.e., the ratios of the factors to their per-unit values. The type of the cumulative distribution function of the minimum from a set of independent random variables is substantiated. Explicit expressions are derived for the mean and median of the quantity of output as CES functions when the factor capacities have (continuous) Weibull distributions. Discretely distributed production factors are considered using the example of a geometric law. An attempt is made to derive the CES function when the factor capacities have discrete Weibull distributions. The difficulties arising in the analytical use of the mean of the Leontief function are described.
Control Sciences. 2025;(2):50-57
pages 50-57 views

Information Technology in Control

A Procedure for Assessing Security Updates in Industrial Systems

Semenkov K., Promyslov V.

摘要

This paper is devoted to the problem of applying cybersecurity updates (patches) for the software of instrumentation and control systems (ICS) with a long lifecycle. The problem is considered for the system operation stage. The main focus is on the large number of vulnerabilities found in software, the complexity of analyzing the impact of a vulnerability on system security, and the requirements for testing the compatibility of updates and software certification after changes have been made. Based on the Failure Mode and Effects Analysis (FMEA), a procedure is proposed to simplify the analysis of the impact of a vulnerability on cybersecurity. This procedure considers a smaller set of attack scenarios rather than each vulnerability separately. The analysis of attack scenarios also covers the effect of security measures. The procedure includes simple criteria for applying security updates based on the analysis results. An example of vulnerability analysis using this procedure is provided.
Control Sciences. 2025;(2):58-73
pages 58-73 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».