Fuzzy Volatility Models with Application to the Russian Stock Market
- 作者: Sviyazov V.A1
-
隶属关系:
- National Research University Higher School of Economics
- 期: 编号 6 (2022)
- 页面: 26-34
- 栏目: Control in Social and Economic Systems
- URL: https://journal-vniispk.ru/1819-3161/article/view/351148
- DOI: https://doi.org/10.25728/pu.2022.6.3
- ID: 351148
如何引用文章
全文:
详细
作者简介
V. Sviyazov
National Research University Higher School of Economics
编辑信件的主要联系方式.
Email: v.sviyazov.96@gmail.com
Moscow, Russia
参考
- Hung, J.C. A Fuzzy Asymmetric GARCH Model Applied to Stock Markets // Information Sciences. – Elsevier, 2009. – Vol. 179, no. 22. – P. 3930–3943.
- Lepskiy, A., Suevalov, A. Application of Fuzzy Asymmetric GARCH-Models to Forecasting of Volatility of Russian Stock Market // Advances in Intelligent Systems and Computing. – Springer Verlag, 2018. – Vol. 679. – P. 286–294.
- Luna, I., Ballini, R. Adaptive Fuzzy System to Forecast Financial Time Series Volatility // Journal of Intelligent and Fuzzy Systems. – 2012. – Vol. 23. – P. 27–38. – doi: 10.3233/IFS-2012-0491.
- Maciel, L., Gomide, F., Ballini, R. Enhanced Evolving Participatory Learning Fuzzy Modeling: An Application for Asset Returns Volatility Forecasting // Evolving Systems. – 2013. – Vol. 5. – P. 1–14. – doi: 10.1007/s12530-013-9099-0.
- Maciel, L., Gomide, F., Ballini, R. Evolving Fuzzy-GARCH Approach for Financial Volatility Modeling and Forecasting // Computational Economics. – Springer New York LLC, 2016. – Vol. 48, no 3. – P. 379–398.
- Popov, A.A., Bykhanov, K.V. Modeling Volatility of Time Series Using Fuzzy GARCH Models // Proceedings - 9th Russian-Korean International Symposium on Science and Technology. – 2005. – Vol. 1. – P. 687–692.
- Tan, L., Wang, S., Wang, K. A New Adaptive Network-Based Fuzzy Inference System with Adaptive Adjustment Rules for Stock Market Volatility Forecasting // Information Processing Letters. – 2017. – Vol. 127. – P. 32–36. – doi: 10.1016/j.ipl.2017.06.012
- Troiano, L., Mejuto, E., Kriplani, P. An Alternative Estimation of Market Volatility Based on Fuzzy Transform // IFSA-SCIS 2017 - Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems. – Otsu, 2017. – P. 1–6. –doi: 10.1109/IFSA-SCIS.2017.8023316.
- Thavaneswaran, A., Liang, Y., Zhu, Z., et al. Novel Data-Driven Fuzzy Algorithmic Volatility Forecasting Models with Applications to Algorithmic Trading // 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). – Glasgow, 2020. – P. 1–8. – doi: 10.1109/FUZZ48607.2020.9177735
- Black, F., Scholes, M. The Pricing of Options and Corporate Liabilities // Journal of Political Economy. – 1973. – Vol. 81, no. 3. – P. 637–657.
- Hull, J.C. Options, Futures, and Other Derivatives. Ninth Edition. – London: Pearson, 2014. – 896 p.
- Bollerslev, T. Generalized Autoregressive Conditional Heteroskedasticity // Journal of Econometrics. – 1986. – Vol. 31, no. 3. – P. 307–327. – DOI: https://doi.org/10.1016/0304-4076(86)90063-1.
- Tsay, R.S. Analysis of Financial Time Series. Third Edition. – Hoboken: John Wiley & Sons, 2010. – 712 p.
- Engle, R.F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation // Econometrica. – 1982. – Vol. 50, no. 4. – P. 987–1007.
- Engle, R.F., Ng, V.K. Measuring and Testing the Impact of News on Volatility // The Journal of Finance. [American Finance Association, Wiley]. – 1993. – Vol. 48, no. 5. – P. 1749–1778.
- Sentana, E. Quadratic ARCH Models // The Review of Economic Studies. [Oxford University Press, Review of Economic Studies, Ltd.]. – 1995. – Vol. 62, no. 4. – P. 639–661.
- Jagannathan, R., Glosten, L., Runkle, D. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks // Journal of Finance. – 1993. – Vol. 48. – P. 1779–1801.
- Zakoian, J.-M. Threshold Heteroskedastic Models // Journal of Economic Dynamics and Control. – 1994. – Vol. 18, no. 5. – P. 931–955.
- Fornari, F., Mele, A. Modeling the Changing Asymmetry of Conditional Variances // Economics Letters. North-Holland. – 1996. – Vol. 50, no. 2. – P. 197–203.
- Takagi, T., Sugeno, M. Fuzzy Identification of Systems and Its Applications to Modeling and Control // IEEE Transactions on Systems, Man, and Cybernetics. – 1985. – Vol. SMC-15, no. 1. – P. 116–132. doi: 10.1109/TSMC.1985.6313399.
- Sugeno, M., Kang, G.T. Structure Identification of Fuzzy Model // Fuzzy Sets and Systems. – 1988. – Vol. 28, no. 1. – P. 15–33.
- Пегат А. Нечеткое моделирование и управление. 2-е издание. – М.: БИНОМ. Лаборатория знаний, 2013. – 798 с. [Piegat, A. Fuzzy Modeling and Control. Second Edition. – Moscow: BINOM. Laboratoriya znanii, 2013. – 798 p. (In Russian)]
- Baczyński, M., Jayaram, B. Fuzzy Implications. – Berlin: Springer Berlin, Heidelberg, 2008. – 328 p.
- Angelov, P.P., Filev, D.P. An Approach to Online Identification of Takagi-Sugeno Fuzzy Models // IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). – 2004. – Vol. 34, no. 1. – P. 484–498. – doi: 10.1109/TSMCB.2003.817053.
- Kostenetskiy, P.S., Chulkevich, R.A., Kozyrev, V.I. HPC Resources of the Higher School of Economics // Journal of Physics: Conference Series. – 2021. – Vol. 1740, no. 1. – Art. no. 012050. – doi: 10.1088/1742-6596/1740/1/012050
补充文件



