Numerical integration by the matrix method of boundary value problems for linear inhomogeneous ordinary differential equations of the third order with variable coefficients


Cite item

Full Text

Abstract

The use of the Taylor polynomial of the second degree when approximating the derivatives by finite differences leads to the second order of approximation of the traditional method of nets in the numerical integration of second-order ordinary differential equations with variable coefficients. In the study of boundary-value problems for the third-order ordinary differential equations with variable coefficients, we offer the previously proposed method of numerical integration, using the means of the matrix calculus, in which approximation of the derivatives by finite differences was not used. According to this method, in the construction of a system of difference equations, an arbitrary power of the Taylor polynomial in the expansion of the desired solution of the problem in a Taylor series can be chosen. The disparity is calculated and an estimate of the order of approximation of the method is given depending on the chosen degree of the Taylor polynomial using the four-point pattern. The regularities between the order of approximation of the matrix method and the degree of the used Taylor polynomial are theoretically revealed. We found out that the order of approximation is proportional to the degree of the used Taylor polynomial and less by two than it. We propose a procedure for constructing a fictitious boundary condition that allows us to construct a closed system of difference equations for the matrix method of numerical integration. The system of difference equations is divided into two subsystems: the first subsystem consists of two equations, the first of which contains the given value of the derivative in the boundary conditions of the problem, the second one contains the value calculated from the fictitious boundary condition; the second subsystem consists of the remaining difference equations of the constructed closed system. The disparity is calculated and an estimate of the order of approximation of the method is given depending on the chosen degree of the Taylor polynomial using the five-point pattern. The regularities between the order of approximation of the matrix method and the degree of the used Taylor polynomial are theoretically revealed. The following is revealed: a) the order of approximation of the first subsystem, the second subsystem with an even value of the degree of the Taylor polynomial and the whole problem is proportional to this degree and less than it by two; b) the order of approximation of the second subsystem with an odd value of the degree of the Taylor polynomial is proportional to this degree and less than it by one.

About the authors

Vladimir N Maklakov

Samara State Technical University

Email: makvo63@yandex.ru
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Hight Mathematics & Applied Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Yanina G Stelmakh

Samara State Technical University

Email: yaninastelmah@rambler.ru
Cand. Educat. Sci.; Associate Professor; Dept. of Hight Mathematics & Applied Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Радченко В. П., Усов А. А. Модификация сеточных методов решения линейных дифференциальных уравнений с переменными коэффициентами на основе тейлоровских разложений // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2008. № 2(17). С. 60-65. doi: 10.14498/vsgtu646.
  2. Keller H. B. Accurate Difference Methods for Nonlinear Two-point Boundary Value Problems // SIAM J. Numer. Anal., 1974. vol. 11, no. 2. pp. 305-320. doi: 10.1137/0711028.
  3. Lentini M., Pereyra V. A Variable Order Finite Difference Method for Nonlinear Multipoint Boundary Value Problems // Math. Comp., 1974. vol. 28, no. 128. pp. 981-1003. doi: 10.1090/s0025-5718-1974-0386281-4.
  4. Keller H. B. Numerical Solution of Boundary Value Problems for Ordinary Differential equations: Survey and Some Resent Results on Difference Methods / Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations: Part I: Survey Lectures; ed. A. K. Aziz. New York: Academic Press, 1975. pp. 27-88. doi: 10.1016/b978-0-12-068660-5.50007-7.
  5. Годунов С. К., Рябенький В. С. Разностные схемы. Введение в теорию. М.: Наука, 1977. 439 с.
  6. Формалеев В. Ф., Ревизников Д. Л. Численные методы. М.: Физматлит, 2004. 400 с.
  7. Самарский А. А. Теория разностных схем. М.: Наука, 1977. 656 с.
  8. Самарский А. А., Гулин А. В. Численные методы. М.: Наука, 1973. 432 с.
  9. Самарский А. А., Гулин А. В. Устойчивость разностных схем. М.: Наука, 1973. 416 с.
  10. Boutayeb A., Chetouani A. Global Extrapolations Of Numerical Methods For Solving A Parabolic Problem With Non Local Boundary Conditions // International Journal of Computer Mathematics, 2003. vol. 80, no. 6. pp. 789-797. doi: 10.1080/0020716021000039209.
  11. Boutayeb A., Chetouani A. A Numerical Comparison of Different Methods Applied to the Solution of Problems with Non Local Boundary Conditions // Applied Mathematical Sciences, 2007. vol. 1, no. 44. pp. 2173-2185, http://www.m-hikari.com/ams/ams-password-2007/ams-password41-44-2007/boutayebAMS41-44-2007.pdf.
  12. Маклаков В. Н. Оценка порядка аппроксимации матричного метода численного интегрирования краевых задач для линейных неоднородных обыкновенных дифференциальных уравнений второго порядка // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2014. № 3(36). С. 143-160. doi: 10.14498/vsgtu1364.
  13. Маклаков В. Н. Сходимость матричного метода численного интегрирования краевых задач для линейных неоднородных обыкновенных дифференциальных уравнений второго порядка с переменными коэффициентами // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2015. Т. 19, № 3. С. 559-577. doi: 10.14498/vsgtu1426.
  14. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 1. М.: Наука, 1970. 608 с.
  15. Курош А. Г. Курс высшей алгебры. М.: Наука, 1971. 431 с.
  16. Закс Л. Статистическое оценивание. М.: Статистика, 1976. 598 с.
  17. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976. 576 с.
  18. Маклаков В. Н. Оценка порядка аппроксимации матричного метода численного интегрирования краевых задач для систем линейных неоднородных обыкновенных дифференциальных уравнений второго порядка с переменными коэффициентами. Сообщение 1. Краевые задачи с граничными условиями первого рода // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2016. Т. 20, № 3. С. 389-409. doi: 10.14498/vsgtu1511.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».