On a mathematical model of non-isothermal creeping flows of a fluid through a given domain


Cite item

Full Text

Abstract

We study a mathematical model describing steady creeping flows of a non-uniformly heated incompressible fluid through a bounded 3D domain with locally Lipschitz boundary. The model under consideration is a system of second-order nonlinear partial differential equations with mixed boundary conditions. On in-flow and out-flow parts of the boundary the pressure, the temperature and the tangential component of the velocity field are prescribed, while on impermeable solid walls the no-slip condition and a Robin-type condition for the temperature are used. For this boundary-value problem, we introduce the concept of a weak solution (a pair “velocity-temperature”), which is defined as a solution to some system of integral equations. The main result of the work is a theorem on the existence of weak solutions in a subspace of the Cartesian product of two Sobolev's spaces. To prove this theorem, we give an operator interpretation of the boundary value problem, derive a priori estimates of solutions, and apply the Leray-Schauder fixed point theorem. Moreover, energy equalities are established for weak solutions.

About the authors

Anastasia Aleksandrovna Domnich

Russian Air Force Military Educational and Scientific Center of the "N. E. Zhukovskiy and Yu. A. Gagarin Air Force Academy"

Email: andomnich@inbox.ru
54 a, Staryh Bolshevikov, Voronezh, 394064, Russian Federation

Evgenii Sergeevich Baranovskii

Voronezh State University, Faculty of Applied Mathematics, Informatics and Mechanics

Email: esbaranovskii@gmail.com
Candidate of physico-mathematical sciences, Associate professor 1, Universitetskaya pl., Voronezh, 394018, Russian Federation

Mikhail Anatolievich Artemov

Voronezh State University, Faculty of Applied Mathematics, Informatics and Mechanics

Email: artemov_m_a@mail.ru
Doctor of physico-mathematical sciences, Professor 1, Universitetskaya pl., Voronezh, 394018, Russian Federation

References

  1. Крейн С. Г., Чан Тху Xа., "Задача протекания неравномерно нагретой вязкой жидкости", Ж. вычисл. матем. и матем. физ., 29:8 (1989), 1153-1158
  2. Ковтунов Д. А., "Разрешимость стационарной задачи тепловой конвекции высоковязкой жидкости", Дифференц. уравнения, 45:1 (2009), 74-85
  3. Короткий А. И., "Разрешимость в слабом смысле одной краевой задачи, описывающей тепловую конвекцию", Тр. ИММ УрО РАН, 16:2 (2010), 121-132
  4. Алексеев Г. В., "Разрешимость стационарных задач граничного управления для уравнений тепловой конвекции", Сиб. матем. журн., 39:5 (1998), 982-998
  5. Фурсиков А. В., Эмануилов Ю. С., "Точная управляемость уравнений Навье-Стокса и Буссинеска", УМН, 54:3(327) (1999), 93-146
  6. Lee H.-C., Imanuvilov O. Yu., "Analysis of optimal control problems for the 2-D stationary Boussinesq equations", J. Math. Anal. Appl., 242 (2000), 191-211
  7. Алексеев Г. В., "Разрешимость обратных экстремальных задач для стационарных уравнений тепломассопереноса", Сиб. матем. журн., 42:5 (2001), 971-991
  8. Alekseev G. V., Tereshko D. A., "Stability of optimal controls for the stationary Boussinesq equations", Inter. J. Differ. Equ., 2011 (2011), 535736
  9. Abidi H., Zhang P., "On the global well-posedness of 2-D Boussinesq system with variable viscosity", Adv. Math., 305 (2017), 1202-1249
  10. Yu Y., Wu X., Tang Y., "Global well-posedness for the 2D Boussinesq system with variable viscosity and damping", Math. Meth. Appl. Sci., 41:8 (2018), 3044-3061
  11. Li Z., "Global well-posedness of the 2D Euler-Boussinesq system with stratification effects", Math. Meth. Appl. Sci., 40:14 (2017), 5212-5221
  12. Vlasova S. S., Prosviryakov E. Yu., "Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border", Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 567-577
  13. Privalova V. V., Prosviryakov E. Yu., "Couette-Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, with allowance made for heat recovery", Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 532-548
  14. Бурмашева Н. В., Просвиряков Е. Ю., "Крупномасштабная слоистая стационарная конвекция вязкой несжимаемой жидкости под действием касательных напряжений на верхней границе. Исследование поля скоростей", Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 21:1 (2017), 180-196
  15. Бурмашева Н. В., Просвиряков Е. Ю., "Крупномасштабная слоистая стационарная конвекция вязкой несжимаемой жидкости под действием касательных напряжений на верхней границе. Исследование полей температуры и давления", Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 21:4 (2017), 736-751
  16. Рагулин В. В., "К задаче о протекании вязкой жидкости сквозь ограниченную область при заданном перепаде давления и напора", Динамика сплошной среды, 27 (1976), 78-92
  17. Conca C., Murat F., Pironneau O., "The Stokes and Navier-Stokes equations with boundary conditions involving the pressure", Japan. J. Math., 20 (1994), 279-318
  18. Marušić S., "On the Navier-Stokes system with pressure boundary condition", Ann. Univ. Ferrara, 53 (2007), 319-331
  19. Bertoluzza S., Chabannes V., Prud'homme C., Szopos M., "Boundary conditions involving pressure for the Stokes problem and applications in computational hemodynamics", Comput. Methods Appl. Mech. Eng., 322 (2017), 58-80
  20. Nečas J., Direct Methods in the Theory of Elliptic Equations, Springer, Heidelberg, 2012, xvi+372 pp.
  21. Ладыженская О. А., Математические вопросы динамики вязкой несжимаемой жидкости, Наука, М., 1970, 288 с.
  22. Renardy M., Rogers R., An Introduction to Partial Differential Equations, 2nd edition, Springer-Verlag, New York, 2004, xiv+434 pp.
  23. Скрыпник И. В., Методы исследования нелинейных эллиптических граничных задач, Наука, М., 1990, 488 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».