Three-dimensional surface wave in half-space and edge waves in plates with mixed boundary conditions on the front edge


Cite item

Full Text

Abstract

In the first part of this paper the propagation of sinusoidal three-dimensional surface waves is investigated for an isotropic elastic half-space with mixed boundary conditions. It is assumed that the boundary is fixed in one of the tangential directions and traction free in the other directions. The exact dispersion relation is derived which shows the existence and uniqueness of the three-dimensional surface wave. The speed of this wave depends on the angle of propagation and lies between the shear wave speed and Rayleigh wave speed. The graphs of this dependence are presented for various values of Poisson ratio. In the second part of this paper the three-dimensional edge waves in plates with mixed boundary conditions on the edge are investigated. The faces of the plate are assumed to be traction free. Both symmetric and antisymmetric solutions of three-dimensional dynamic equations of elasticity are considered. It is assumed that the edge is fixed in one of the tangential directions and traction free in the normal and the other tangential direction. Asymptotic analysis is performed, which shows that there is an infinite spectrum of higher order edge waves in such plates. The results of numerical calculations based on the modal expansion method are presented to confirm asymptotic analysis. In addition, by the numerical investigation the fundamental edge wave was found in the symmetric case (the edge is fixed in the tangential direction transversally to the faces). The phase velocity of this wave tends to some limit value depending on the Poisson ratio as the wave number increases. In the antisymmetric case the first higher order wave has the same limit value. The dispersion curves are presented for various values of Poisson ratio.

About the authors

Roman V Ardazishvili

N. G. Chernyshevsky Saratov State University (National Research University)

Email: ardazishvili.roman@yandex.ru
Postgraduate Student, Dept. of Mathematical Theory of Elasticity and Biomechanics 83, Astrakhanskaya st., Saratov, 410012, Russian Federation

Maria V Wilde

N. G. Chernyshevsky Saratov State University (National Research University)

Email: mv_wilde@mail.ru
(Dr. Phys. & Math. Sci.; mvwilde@mail.ru; Corresponding Author), Professor, Dept. of Mathematical Theory of Elasticity and Biomechanics 83, Astrakhanskaya st., Saratov, 410012, Russian Federation

Leonid Yu Kossovich

N. G. Chernyshevsky Saratov State University (National Research University)

Email: president@sgu.ru
(Dr. Phys. & Math. Sci.; president@sgu.ru), Professor, Head of Department, Dept. of Mathematical Theory of Elasticity and Biomechanics 83, Astrakhanskaya st., Saratov, 410012, Russian Federation

References

  1. Rayleigh J. On waves propagated along the surface of an elastic solid // Proc. Lond. Math. Soc., 1885. vol. s1-17, no. 1. pp. 4-11. doi: 10.1112/plms/s1-17.1.4.
  2. Викторов И. А. Типы звуковых поверхностных волн в твердых телах (Обзор) // Акуст. журн., 1979. Т. 25, № 1. С. 1-17
  3. Destrade M., Scott N. H. Surface waves in a deformed isotropic hyperelastic material subject to an isotropic internal constraint // Wave Motion, 2004. vol. 40, no. 4. pp. 347-357. doi: 10.1016/j.wavemoti.2003.09.003.
  4. Dai H. H., Kaplunov J., Prikazchikov D. A. A long-wave model for the surface elastic wave in a coated half-space // Proc. R. Soc. A, 2010. vol. 466. pp. 3097-3116. doi: 10.1098/rspa.2010.0125.
  5. Eduardo Godoy, Mario Durán, Jean-Claude Nédélec On the existence of surface waves in an elastic half-space with impedance boundary conditions // Wave Motion, 2012. vol. 49, no. 6. pp. 585-594. doi: 10.1016/j.wavemoti.2012.03.005.
  6. Stan Chirita, Michele Ciarletta, Vincenzo Tibullo Rayleigh Surface Waves on a Kelvin-Voigt Viscoelastic Half-Space // Journal of Elasticity, 2013. vol. 115, no. 1. pp. 61-76. doi: 10.1007/s10659-013-9447-0.
  7. Inder Singh Gupta Propagation of Rayleigh Waves in a Prestressed Layer over a Prestressed Halfspace // Frontiers in Geotechnical Engineering (FGE), 2013. vol. 2, no. 1. pp. 16-22
  8. Baljeet Singh Propagation of Rayleigh Wave in a Thermoelastic Solid Half-Space with Microtemperatures // International Journal of Geophysics, 2014. vol. 2014. pp. 1-6. doi: 10.1155/2014/474502.
  9. Коненков Ю. К. Об изгибной волне “рэлеевского” типа // Акуст. журн., 1960. Т. 6, № 1. С. 124-126
  10. Белубекян М. В., Гулгазарян Г. Р., Саакян А. В. Волны типа Рэлея в полубесконечной круговой замкнутой цилиндрической оболочке // Изв. НАН Армении, Механика, 1997. Т. 50, № 3-4. С. 49-55
  11. Kaplunov J. D., Kossovich L. Yu., Wilde M. V. Free localized vibrations of a semi-infinite cylindrical shell // J. Acoust. Soc. Am., 2000. vol. 107, no. 3. pp. 1383-1393. doi: 10.1121/1.428426.
  12. Kaplunov J. D., Wilde M. V. Edge and interfacial vibrations in elastic shells of revolution //ZAMP, 2000. vol. 51, no. 4. pp. 530-549. doi: 10.1007/s000330050015.
  13. Fu Y. B., Brookes D. W. Edge waves in asymmetrically laminated plates // Journal of the Mechanics and Physics of Solids, 2006. vol. 54, no. 1. pp. 1-21. doi: 10.1016/j.jmps.2005.08.007.
  14. Piliposian G. T., Belubekyan M. V., Ghazaryan K. B. Localized bending waves in a transversely isotropic plate // Journal of Sound and Vibration, 2010. vol. 329, no. 17. pp. 3596-3605. doi: 10.1016/j.jsv.2010.03.019.
  15. Krushynska A. A. Flexural edge waves in semi-infinite elastic plates // Journal of Sound and Vibration, 2011. vol. 330, no. 9. pp. 1964-1976. doi: 10.1016/j.jsv.2010.11.002.
  16. Fu Y. B., Kaplunov J. Analysis of localized edge vibrations of cylindrical shells using the Stroh formalism // Math. Mech. Solids, 2012. vol. 17, no. 1. pp. 59-66. doi: 10.1177/1081286511412442.
  17. Белубекян В. М., Белубекян М. В. Трехмерная задача распространения поверхностных волн Рэлея // Докл. НАН Армении, 2005. Т. 105, № 4. С. 362-368
  18. Kaplunov J. D., Prikazchikov D. A., Rogerson G. A. On three-dimensional edge waves in semi-infinite isotropic plates subject to mixed face boundary conditions // J. Acoust. Soc. Am., 2005. vol. 118, no. 5. pp. 2975-2983. doi: 10.1121/1.2062487.
  19. Zernov V., Kaplunov J. Three-dimensional edge waves in plates // Proc. R. Soc. Lond. A, 2008. vol. 464. pp. 301-318. doi: 10.1098/rspa.2007.0159.
  20. Вильде М. В., Каплунов Ю. Д., Коссович Л. Ю. Краевые и интерфейсные резонансные явления в упругих телах. М.: Физматлит, 2010. 280 с.
  21. Головчан В. Т., Кубенко В. Д., Шульга Н. А., Гузь А. Н., Гринченко В. Т. Пространственные задачи теории упругости и пластичности / Динамика упругих тел. Т. 5. Киев: Наук. думка, 1986. 288 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».