Existence and uniqueness of solutions to the Goursat–Darboux system with integral boundary conditions
- Authors: Mardanov M.J.1,2, Sharifov Y.A.3,2,4
-
Affiliations:
- Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
- Baku State University
- Institute of Mathematics and Mechanics
- Azerbaijan Technical University
- Issue: Vol 29, No 2 (2025)
- Pages: 241-255
- Section: Differential Equations and Mathematical Physics
- URL: https://journal-vniispk.ru/1991-8615/article/view/349669
- DOI: https://doi.org/10.14498/vsgtu2147
- EDN: https://elibrary.ru/ESOZQG
- ID: 349669
Cite item
Full Text
Abstract
Currently, local boundary value problems for hyperbolic-type differential equations have been studied in considerable details. However, mathematical modeling of various real-world processes leads to nonlocal boundary value problems for nonlinear hyperbolic differential equations, which remain insufficiently investigated. This paper is devoted to a general integral boundary value problem in a characteristic rectangle for hyperbolic equations. Under natural conditions on the input data, we construct the Green’s function and establish uniqueness criteria for the solution. The proofs of the main results demonstrate the essential nature of the imposed conditions: their violation makes it impossible to construct the Green’s function and leads to the loss of required solvability properties. For a special case, by using Banach’s contraction mapping principle, we obtain sufficient conditions for the existence and uniqueness of the boundary value problem solution. A specific example is provided to illustrate the obtained results.
Full Text
##article.viewOnOriginalSite##About the authors
Misir J. Mardanov
Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences; Baku State University
Author for correspondence.
Email: misirmardanov@yahoo.com
ORCID iD: 0000-0003-3901-0719
Scopus Author ID: 55646639800
ResearcherId: Q-4480-2016
https://www.mathnet.ru/rus/person21841
Dr. Phys. & Math. Sci., Professor, Corresponding Member of ANAS; Director of Institute; Professor; Dept. of Higher Mathematics
Azerbaijan, AZ1141, Baku, Bakhtiyar Vahabzade st., 9; AZ1148, Baku, Z. Khalilov st., 33Yagub A. Sharifov
Institute of Mathematics and Mechanics; Baku State University; Azerbaijan Technical University
Email: sharifov22@rambler.ru
ORCID iD: 0000-0001-5273-6384
https://www.mathnet.ru/rus/person76177
Dr. Phys. & Math. Sci., Professor; Leading Researcher; Dept. of Optimal Control; Professor; Dept. of Engineering Mathematics and Artificial Intelligence; Professor; Dept. of Applied Mathematics
Azerbaijan, AZ1141, Baku, Bakhtiyar Vahabzade st., 9; AZ1148, Baku, Z. Khalilov st., 33; AZ1073, Baku, Hussein Javid prosp., 25References
- Samarskii A. A. Some problems of the theory of differential equations, Differ. Uravn., 1980, vol. 16, no. 11, pp. 1925–1935 (In Russian).
- Nakhushev A. M. Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Boundary Value Problems with Shift for Partial Differential Equations]. Moscow, Nauka, 2006, 287 pp. (In Russian). EDN: PDBUIH.
- Ptashnik B. I. Nekorrektnye granichnye zadachi dlia differentsial’nykh uravnenii s chastnymi proizvodnymi [Ill-Posed Boundary Value Problems for Partial Differential Equations]. Naukova Dumka, Kiev, 1984, 264 pp. (In Russian)
- Pul’kina L. S. Zadachi s neklassicheskimi usloviiami dlia giperbolicheskikh uravnenii [Problems with Nonclassical Conditions for Hyperbolic Equations]. Samara University, Samara, 2012, 194 pp. (In Russian)
- Byszewski L. Existence and uniqueness of solution of nonlocal problems for hyperbolic equation $u_{xt}=F(x,t,u,u_x)$, J. Appl. Math. Stoch. Anal., 1990, vol. 3, no. 3, pp. 163–168. http://eudml.org/doc/46588.
- Zhestkov S. V. The Goursat problem with integral boundary conditions, Ukr. Math. J., 1990, vol. 42, no. 1, pp. 119–122. EDN: XLTFER. DOI: https://doi.org/10.1007/BF01066375.
- Paneah B., Paneah P. Nonlocal problems in the theory of hyperbolic differential equations, Trans. Moscow Math. Soc., 2009, vol. 70, pp. 135–170. DOI: https://doi.org/10.1090/S0077-1554-09-00179-4.
- Assanova A. T. Nonlocal problem with integral conditions for a system of hyperbolic equations in characteristic rectangle, Russian Math. (Iz. VUZ), 2017, vol. 61, no. 5, pp. 7–20. EDN: XNIJGX. DOI: https://doi.org/10.3103/S1066369X17050024.
- Assanova A. T. A generalized integral problem for a system of hyperbolic equations and its applications, Hacet. J. Math. Stat., 2023, vol. 52, no. 6, pp. 1513–1532. EDN: OFOULD. DOI: https://doi.org/10.15672/hujms.1094454.
- Bouziani A. Solution forte d’un problème mixte avec conditions non locales pour une classe d’équations hyperboliques, Bulletins de l’Académie Royale de Belgique, 1997, vol. 8, no. 1–6, pp. 53–70. https://www.persee.fr/doc/barb_0001-4141_1997_num_8_1_27797.
- Kozhanov A. I., Pul’kina L. S. On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations, Differ. Equ., 2006, vol. 42, no. 9, pp. 1233–1246. EDN: KDUGPW. DOI: https://doi.org/10.1134/S0012266106090023.
- Assanova A. T., Dzhumabaev D. S. Well-posedness of nonlocal boundary value problems with integral condition for the system of hyperbolic equations, J. Math. Anal. Appl., 2013, vol. 402, no. 1, pp. 167–178. EDN: XKUPFV. DOI: https://doi.org/10.1016/j.jmaa.2013.01.012.
- Assanova A. T. On the solvability of a nonlocal problem for the system of Sobolev-type differential equations with integral condition, Georgian Math. J., 2021, vol. 28, no. 1, pp. 49–57. EDN: QHOEWV. DOI: https://doi.org/10.1515/gmj-2019-2011.254
- Assanova A. T. On a nonlocal problem with integral conditions for the system of hyperbolic equations, Differ. Equ., 2018, vol. 54, no. 2, pp. 201–214. EDN: YBZFKX. DOI: https://doi.org/10.1134/S0012266118020076.
- Golubeva N. D., Pul’kina L. S. A nonlocal problem with integral conditions, Math. Notes, 1996, vol. 59, no. 3, pp. 326–328. EDN: OKGZPD. DOI: https://doi.org/10.1007/BF02308548.
- Pul’kina L. S. The $L_2$ solvability of a nonlocal problem with integral conditions for a hyperbolic equation, Differ. Equ., 2000, vol. 36, no. 2, pp. 316–318. EDN: LFVPFH. DOI: https://doi.org/10.1007/BF02754219.
- Oussaeif T. E., Bouziani A. Solvability of nonlinear Goursat type problem for hyperbolic equation with integral condition, Khayyam J. Math., 2018, vol. 4, no. 2, pp. 198–213. DOI: https://doi.org/10.22034/kjm.2018.65161.
- Mardanov M. J., Sharifo Y. A. An optimal control problem for the systems with integral boundary conditions, Bulletin of the Karaganda University. Mathematics Series, 2023, no. 1, pp. 110–123. EDN: PFRKML. DOI: https://doi.org/10.31489/2023M1/110-123.
Supplementary files


