Asymptotics of sums with Gaussian kernel and multiplicative coefficients

Cover Page

Cite item

Full Text

Abstract

This study deals with the asymptotic behavior of finite sums containing a Gaussian function and a multiplicative term. Such sums naturally arise in complexity analysis of binary tree traversal and ray searching algorithms. Using the method of complex integration, we transform the discrete finite sum into an integral along an infinite vertical line in the complex plane. We demonstrate that the integrand contains a positive integer power of the Riemann zeta function. By applying standard residue calculation techniques, we obtain the asymptotic value of this integral.

About the authors

Alexandr S. Zinchenko

Moscow Aviation Institute (National Research University)

Email: zinchenkoas@mai.ru
ORCID iD: 0000-0001-7971-4572
SPIN-code: 7948-5040
Scopus Author ID: 59124941500
ResearcherId: AAJ-2633-2020
https://www.mathnet.ru/rus/person229294

Cand. Econom. Sci.; Associate Professor; Dept. of Mathematics

Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4

Alexander M. Romanenkov

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: romanaleks@gmail.com
ORCID iD: 0000-0002-0700-8465
SPIN-code: 7586-0934
Scopus Author ID: 57196480014
ResearcherId: AAH-9530-2020
https://www.mathnet.ru/rus/person29785

Cand. Techn. Sci., Associate Professor; Associate Professor; Dept. of Mathematics

Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4

References

  1. Laurinčikas A., Šiauči¯unas D. The mean square of the Hurwitz zeta-function in short intervals, Axioms, 2024, vol. 13, no. 8, 510. DOI: https://doi.org/10.3390/axioms13080510.
  2. Batır N. Choi J. Parameterized finite binomial sums, Mathematics, 2024, vol. 12, no. 16, 2450. DOI: https://doi.org/10.3390/math12162450.
  3. Zhao J. Finite and symmetric Euler sums and finite and symmetric (alternating) multiple $T$-values, Axioms, 2024, vol. 13, no. 4, 210. DOI: https://doi.org/10.3390/axioms13040210.
  4. Knuth D. E. The Art of Computer Programming, vol. 3, Sorting and Searching. Bonn, Addison-Wesley, 1997, 736 pp.
  5. Evgrafov M. A. Asymptotic Estimates and Entire Functions. Mineola, NY, Dover Publ., 2020, x+181 pp.
  6. Changa M. E. Method of complex integration, Lekts. Kursy NOC, 2. Moscow, Steklov Math. Institute of RAS, 2006, pp. 3–56 (In Russian). EDN: TSOANP. DOI: https://doi.org/10.4213/lkn2.
  7. Solominov V. M., Romanenkov A. M. Methods of analytic number theory for asymptotic analysis of bubble sort, In: Development Strategies of Science and Education in the 21st Century. Smolensk, 2016, pp. 119–128 (In Russian). EDN: XVXECL.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Integration contour

Download (52KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».