Inhomogeneous Ekman flow
- Authors: Burmasheva N.V.1,2, Prosviryakov E.Y.1,2
-
Affiliations:
- Ural Federal University named after the first President of Russia B. N. Yeltsin
- Institute of Engineering Science, Ural Branch of RAS
- Issue: Vol 29, No 3 (2025)
- Pages: 486-502
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://journal-vniispk.ru/1991-8615/article/view/349684
- DOI: https://doi.org/10.14498/vsgtu2179
- EDN: https://elibrary.ru/CQUYOV
- ID: 349684
Cite item
Full Text
Abstract
This paper presents a new exact solution describing the inhomogeneous distribution of velocity and pressure fields in the problem of isothermal steady shear flow of a viscous incompressible fluid. The obtained exact solutions remain valid when the kinematic viscosity is replaced by the turbulent viscosity in the Navier–Stokes equations.
It is shown that in the class of functions that are linear in some coordinates, a joint inhomogeneous solution for the velocity field can have only a specific structure—with constant spatial accelerations. In this case, either only two specific accelerations vanish, or all four spatial accelerations equal zero (homogeneous velocity field, Ekman solution). No other joint solutions exist in the specified class.
The case of two nonzero spatial accelerations is analyzed in detail, and the complete exact solution is provided. To understand the main properties of this solution, the corresponding boundary value problem is investigated and comprehensive illustrative material is presented.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Natalya V. Burmasheva
Ural Federal University named after the first President of Russia B. N. Yeltsin; Institute of Engineering Science, Ural Branch of RAS
Author for correspondence.
Email: nat_burm@mail.ru
ORCID iD: 0000-0003-4711-1894
Scopus Author ID: 57193346922
ResearcherId: E-3908-2016
https://www.mathnet.ru/eng/person52636
Cand. Tech. Sci.; Associate Professor; Dept. of Information Technology and Automation; Senior Researcher; Sect. of Nonlinear Vortex Hydrodynamics
Russian Federation, 620002, Ekaterinburg, Mira st., 19; 620049, Ekaterinburg, Komsomolskaya st., 34Evgenii Yu. Prosviryakov
Ural Federal University named after the first President of Russia B. N. Yeltsin; Institute of Engineering Science, Ural Branch of RAS
Email: evgen_pros@mail.ru
ORCID iD: 0000-0002-2349-7801
Scopus Author ID: 57189461740
ResearcherId: E-6254-2016
https://www.mathnet.ru/rus/person41426
Dr. Phys. & Math. Sci.; Professor; Dept. of Information Technology and Automation; Head of Sector; Sect. of Nonlinear Vortex Hydrodynamics
Russian Federation, 620002, Ekaterinburg, Mira st., 19; 620049, Ekaterinburg, Komsomolskaya st., 34References
- Smagorinsky J. History and progress, In: The Global Weather Experiment-Perspective on Its Implementation and Exploitation, A Report of the FGGE Advisory Panel to the U.S. Committee for the Global Atmospheric Research Program (GARP), National Academy of Science, 1978, 4–12 pp.
- Smagorinsky J. The beginnings of numerical weather prediction and general circulation modeling: Early recollections, Adv. Geophys., 1983, vol. 25, pp. 3–37. DOI: https://doi.org/10.1016/S0065-2687(08)60170-3.
- Smagorinsky J., Phillips N. A. Scientific problems of the global weather experiment, In: The Global Weather Experiment-Perspective on Its Implementation and Exploitation, A Report of the FGGE Advisory Panel to the U.S. Committee for the Global Atmospheric Research Program (GARP), National Academy of Science, 1978, 13–21 pp.
- Ekman V. On the Influence of the Earth’s Rotation on Ocean currents, Ark. Mat. Astr. Fys., 1905, vol. 2, no. 11, pp. 1–53. http://jhir.library.jhu.edu/handle/1774.2/33989.
- Pedlosky J. Geophysical Fluid Dynamics. Berlin, New York, Springer-Verlag, 1987, xiv+710 pp.
- Davidson P. A. Ekman Boundary Layers, In: The Dynamics of Rotating Fluids. Oxford, Oxford Academic, 2024, pp. 99–126. DOI: https://doi.org/10.1093/9780191994272.003.0007.
- Aristov S. N., Frik P. G. Nonlinear effects of the Ekman layer on the dynamics of large–scale eddies in shallow water, J. Appl. Mech. Tech. Phys., 1991, vol. 32, no. 2, pp. 189–194. EDN: ZONZGY. DOI: https://doi.org/10.1007/BF00858033.
- Aristov S. N., Myasnikov V. P. Time-dependent three-dimensional structures in the near–surface layer of the ocean, Phys. Dokl., 1996, vol. 41, no. 8, pp. 358–360. EDN: LDSWPZ.
- Aristov S. N., Shvarts K. G. Vikhrevyye techeniya advektivnoy prirody vo vrashchayushchemsya sloe zhidkosti [Vortex Flows of Advective Nature in a Rotating Fluid Layer]. Perm, Perm State Univ., 2006, 153 pp. (In Russian). EDN: UHQWPT.
- Burmasheva N. V., Prosviryakov E. Yu. Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid, Trudy Inst. Mat. i Mekh. UrO RAN, 26, 2020, pp. 79–87 (In Russian). EDN: IAWMLK. DOI: https://doi.org/10.21538/0134-4889-2020-26-2-79-87.
- Gorshkov A. V., Prosviryakov E. Yu. Ekman convective layer flow of a viscous incompressible fluid, Izv. Atmos. Ocean. Phys., 2018, vol. 54, no. 2, pp. 189–195. EDN: XXMQQP. DOI: https://doi.org/10.1134/S0001433818020081.
- Korotaev G. K., Mikhaylova E. N., Shapiro N. B. Teoriya ekvatorial’nykh protivotechcheniy v Mirovom okeane [Theory of Equatorial Countercurrents in the World Ocean]. Kiev, Naukova Dumka, 1986, 205 pp. (In Russian)
- Lin C. C. Note on a class of exact solutions in magneto-hydrodynamics, Arch. Rational Mech. Anal., 1957, vol. 1, pp. 391–395. DOI: https://doi.org/10.1007/BF00298016.
- Sidorov A. F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory, J. Appl. Mech. Techn. Phys., 1989, vol. 30, no. 1, pp. 197–203. EDN: LZHPWE. DOI: https://doi.org/10.1007/BF00852164.
- Aristov S. N. Vortex Flows in Thin Fluid Layers, Dr. Sci. Dissertation in Phys. and Math. Vladivostok, Inst. of Automation and Control Processes, 1990, 303 pp. (In Russian)
- Aristov S. N., Knyazev D. V., Polyanin A. D. Exact solutions of the Navier–Stokes Equations with the linear dependence of velocity components on two space variables, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, pp. 642–662. EDN: LPGJRJ. DOI: https://doi.org/10.1134/S0040579509050066.
- Aristov S. N., Prosviryakov E. Yu. A new class of exact solutions for three–dimensional thermal diffusion equations, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286–293. EDN: WVXGCZ. DOI: https://doi.org/10.1134/S0040579516030027.
- Burmasheva N. V., Prosviryakov E. Yu. A class of exact solutions for two-dimensional equations of geophysical hydrodynamics with two Coriolis parameters, Bull. Irkutsk State Univ. Ser. Math., 2020, vol. 32, pp. 33–48 (In Russian). EDN: PIXYNJ. DOI: https://doi.org/10.26516/1997-7670.2020.32.33.
- Burmasheva N. V., Prosviryakov E. Yu. Isothermal layered flows of a viscous incompressible fluid with spatial acceleration in the case of three Coriolis parameters, Diagn. Resour. Mech. Mater. Struct., 2020, no. 3, pp. 29–46 (In Russian). EDN: EMNPVK. DOI: https://doi.org/10.17804/2410-9908.2020.3.029-046.
- Shtern V. Counterflows. Paradoxical Fluid Mechanics Phenomena. Cambridge, Cambridge Univ. Press, 2012, xiv+470 pp. DOI: https://doi.org/10.1017/CBO9781139226516.
- Chkhetiani O. G., Vazaeva N. V. On algebraic perturbations in the atmospheric boundary layer, Izv. Atmos. Ocean. Phys., 2019, vol. 55, no. 5, pp. 432–445. DOI: https://doi.org/10.1134/S0001433819050050.
- Berker R. A. Sur quelques cas d’intégration des équations du mouvement d’un fluide visqueux incompressible, Thèses de l’entre-deux-guerres. Paris–Lille, Imprimerie A. Taffin–Lefort, 1936, vii+161 pp. http://eudml.org/doc/192863.
- Wheeler M. H. On stratified water waves with critical layers and Coriolis forces, Discrete Contin. Dyn. Syst., 2019, vol. 39, no. 8, pp. 4747–4770. DOI: https://doi.org/10.3934/dcds.2019193.
- Sarja A., Singh P., Ekkad S. V. Parallel rotation for negating Coriolis force effect on heat transfer, Aeronaut. J., 2020, vol. 124, no. 1274, pp. 581–596. DOI: https://doi.org/10.1017/aer.2020.1.
- Prosviryakov E. Yu., Sokolov A. S. Numerical construction of a Set of zero velocities and countercurrents for steady dynamic equilibria, Tech. Phys. Lett., 2022, vol. 48, no. 12, pp. 322–328. EDN: FBDWUK. DOI: https://doi.org/10.1134/s1063785022110050.
- Zhao J. Axisymmetric convection flow of fractional Maxwell fluid past a vertical cylinder with velocity slip and temperature jump, Chin. J. Phys., 2020, vol. 67, pp. 501–511. DOI: https://doi.org/10.1016/j.cjph.2020.08.009.
- Tro S., Grooms I., Julien K. Parameterized Ekman boundary layers on the tilted $f$-plane, J. Fluid Mech., 2024, vol. 1000, A61. DOI: https://doi.org/10.1017/jfm.2024.561.
- Kostelecky J., Ansorge C. Surface roughness in stratified turbulent Ekman flow, Boundary-Layer Meteorol., 2025, vol. 191, 5. DOI: https://doi.org/10.1007/s10546-024-00895-5.
- McPhaden M. J., Athulya K., Girishkumar M. S., Orlić M. Ekman revisited: Surface currents to the left of the winds in the Northern Hemisphere, Sci. Adv., 2024, vol. 10, no. 46, eadr0282. DOI: https://doi.org/10.1126/sciadv.adr0282.
Supplementary files













