О задаче Коши для n-мерной системы уравнений Эйлера-Пуассона-Дарбу на плоскости


Цитировать

Полный текст

Аннотация

Рассмотрена система уравнений Эйлера-Пуассона-Дарбу. Получено решение задачи Коши для случая, когда матрица-коэффициент - действительная (n×n)-матрица и имеет одно собственное значение кратности n или пару комплексносопряжённых собственных значений кратности n/2 и действительная часть собственных значений принадлежит интервалу (−1/2, 1/2).

Об авторах

Екатерина Алексеевна Максимова

Самарский государственный технический университет

Email: katyuha_mak@mail.ru
аспирант, каф. прикладной математики и информатики; Самарский государственный технический университет

Список литературы

  1. Андреев А. А. Об одном классе систем дифференциальных уравнений гиперболического типа / В сб.: Дифференциальные уравнения в частных производных: Cб. тр. мат. кафедр пединститутов РСФСР. Вып. 16. Рязань: Рязан. гос. пед. инст., 1980. С. 9-14.
  2. Андреев А. А., Максимова Е. А. Решение задачи Коши для одной системы гиперболического типа с сингулярными характеристиками / В сб.: Труды восьмой Всероссийской научной конференции с международным участием. Часть 3: Дифференциальные уравнения и краевые задачи / Математическое моделирование и краевые задачи. Самара: СамГТУ, 2011. С. 11-17.
  3. Максимова Е. А. Решение задачи Коши для системы уравнений Эйлера-Пуассона-Дарбу // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2011. № 3(24). С. 167-170.
  4. Тыртышников Е. Е. Матричный анализ и линейная алгебра. М.: Физматлит, 2007. 480 с.
  5. Бицадзе А. В. Уравнения смешанного типа. М.: Наука, 1966. 164 с.
  6. Lancaster P. Theory of Matrices. New York: Academic Press, 1969. 316 pp.
  7. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables / eds. M. Abramowitz, I. A. Stegun. New York: Dover, 1972. 824 pp.
  8. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. Higher transcendental functions. Vol. I / ed. H. Bateman. New York - Toronto - London: McGraw-Hill Book Co, Inc., 1953. 302 pp.
  9. Гантмахер Ф. Р. Теория матриц. М.: Наука, 1988. 549 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2012

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».