Safe and Dangerous Bifurcation Points in Non-Autonomous Dynamical Systems
- Authors: Mustafina I.Z.1
-
Affiliations:
- Uchaly College of Mining Industry
- Issue: No 3 (66) (2024)
- Pages: 47-54
- Section: Mechanics
- URL: https://journal-vniispk.ru/1993-0550/article/view/307282
- DOI: https://doi.org/10.17072/1993-0550-2024-3-47-54
- ID: 307282
Cite item
Full Text
Abstract
Dynamical systems described by periodic differential equations depending on a scalar parameter are considered. The types of bifurcation points (safe or dangerous) are determined and the behavior of the system when its parameters pass through the bifurcation point is studied. The basic formulas are obtained in terms of the initial equations and do not require a transition to normal forms and the use of theorems about the central manifold.
About the authors
Il. Zh. Mustafina
Uchaly College of Mining Industry
Author for correspondence.
Email: fanina84@bk.ru
the highest categories teacher 7, Pioneer builders St., Uchaly, Russia, 453700
References
- Shil`nikov, L.P., Shil`nikov, A.L., Turaev, D.V. and etc. (2009), Metody` kachestvennoj teorii v nelinejnoj dinamike [Methods of qualitative theory in nonlinear dynamics], Ch. 2. M.–Izhevsk: In-t komp`yut. issled., 548 p. (In Russ.).
- Bautin, N.N. (1949), Povedenie dinamicheskix sistem vblizi granicz oblasti ustojchivosti [Behavior of dynamical systems near the boundaries of the stability domain], Ser. "Cov-remenny`e problemy` mexaniki", L. ̶ M.: OGIZ Gostexizdat. (In Russ.).
- Vy`shinskij, A.A., Ibragimova, L.S., Murtazina, S.A and etc. (2010), Operatorny`j metod priblizhennogo issledovaniya pravil`noj bifurkacii v mnogoparametricheskix dinamicheskix sistemax [An operator method for approximate investigation of correct bifurcation in multiparametric dynamical systems], Ufimsk. matemat. zhurn. Vol. 2, no. 4, pp. 3-26. (In Russ.).
- Van D., Li Ch. and Chou, Sh.-N. (2005), Normal`ny`e formy` i bifurkacii vektorny`x polej na ploskosti [Normal shapes and bifurcations of vector fields on the plane], M.: MCzNMO. (In Russ.).
- Kuznetsov, Yu. A. (1998), Elements of Applied Bifurcation Theory, N.Y.: Springer.
- Gukenxejmer, Dzh. and Xolms, F. (2002), Nelinejny`e kolebaniya, dinamicheskie siste-my` i bifurkacii vektorny`x polej [Bifurcation of the birth of the cycle and its applica-tions]. M.–Izhevsk: In-t komp`yut. issled. 560 p. (In Russ.).
- Marsden, Dzh. and Mak-Kraken, M. (1980), Bifurkaciya rozhdeniya cikla i ee prilozheniya [Bifurcation of the birth of a cycle and its applications], M.: Mir. (In russ.)
- Gusarova, N.I., Murtazina, S.A., Fazly`tdinov, M.F. and etc. (2018), Operatorny`e metody` vy`chisleniya lyapunovskix velichin v zadachax o lokal`ny`x bifurkaciyax dinamicheskix sistem [Operator methods for calculating Lyapunov quantities in problems of local bifurcations of dynamical systems], Ufimsk. matemat. Zhurn, Vol. 10, no. 1, pp. 25-49. (In Russ.).
- Krasnosel`skij, M.A., Kuzneczov, N.A. and Yumagulov, M.G. (1996), Operatorny`j metod analiza ustojchivosti ciklov pri bifurkacii Xopfa [An operator method for analyzing the stability of cycles under Hopf bifurcation] Avtomatika i telemexanika, no.12, pp. 24-30. (In Russ.).
- Ibragimova, L.S., Mustafina, I.Zh. and Yumagulov, M.G. (2017), Issledovanie granicz oblastej ustojchivosti dvuxparametricheskix dinamicheskix sistem [Investigation of the boundaries of the stability domains of two-parameter dynamical systems], AiT, no. 10. pp. 74-89. (In Russ.).
- Yumagulov, M.G. (2024), Vvedenie v nelinejnuyu dinamiku: teoriya, prilozheniya, modeli: uchebnoe posobie dlya vuzov 2-e izd., ster. ̶[Introduction to nonlinear dynamics: theory, applications, models: textbook for universities], Sankt-Peterburg: Lan, 368 p. (In Russ.).
Supplementary files


