Modeling of Stationar Thermal Regime of Cylindrical Frame Element in Orbit

Cover Page

Cite item

Full Text

Abstract

The problem of finding the temperature fields of a cylindrical element of an expandable construction was solved using the finite element method in the ANSYS software package. The steady thermal state of hollow cylindrical body in low earth orbit conditions is studied. Significance of inner boundary radiative heat exchange is evaluated. Steady-state thermal distribution is modeled for cases of copper, aluminum and mixed external coating. Method of passive regulation of stationary temperatures by changing width of solar heat absorbing copper foil coating is proposed.

About the authors

A. R. Fagalov

Perm State University

Author for correspondence.
Email: fagalovar@psu.ru
Second year Master of Mechanics and Mathematical Modeling at the Physics and Mathematics Institute 15, Bukireva St., Perm, Russia, 614068

A. Yu. Beliaev

Institute of Continuous Media Mechanics, Ural Branch of RAS

Email: belyaev@icmm.ru
Junior Researcher, Laboratory of Micromechanics of Structurally Inhomogeneous Media 1, Akademika Koroleva St., Perm, Russia, 614013

References

  1. Lopatin, A. V., Rutkovskaya, M. A. (2007) "Obzor konstruktsiy sovremennykh transformiruyemykh kosmicheskikh antenn (chast' 2)", Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva, № 3(16), pp. 78-81.
  2. Kondyurin, Alexey (2023) "Design and fabrication of large polymer constructions in space", Elsevier. ISBN: 978-0-12-816803-5.
  3. Zarubin, V. S., Zimin, V. N. and Kuvyrkin, G. N. (2017) "Raspredeleniye temperatury sferi-cheskoy obolochki kosmicheskogo kalibrovochno-yustirovochnogo apparata", Prikladnaya mekhanika i teoreticheskaya fizika, vol. 58, № 6(346), pp.149-157. doi: 10.15372/PMTF20170614.
  4. Gorodetskiy, M. A., Klimakova, L. A., Mikhaylovskiy, K. V. and Reznik, S. V. (2019) "Novyye podkhody k sozdaniyu termostabil'nykh kosmicheskikh platform dlya distantsionnogo zondirovaniya Zemli", Klyuchevyye trendy v kompozitakh: nauka i tekhnologii: cbornik materialov Mezhdunarodnoy nauchno-prakticheskoy konferentsii, pp. 142-149. EDN CCXDRR.
  5. Filina, Ye. K., Mikhaylovskiy, K. V., Arkhipov, M. Yu. and Golubev, Ye. S. (2019) "Razrabotka skhemy podkrepleniya otrazhayushchey obshivki reflektora metodami parametricheskoy i topologicheskoy optimizatsii", Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Inzhenernyye issledovaniya, vol. 20, № 4, pp. 276-284. doi: 10.22363/2312-8143-2019-20-4-276-284.
  6. Yeliseyeva, A. Yu., Komar, L. A. and Kondyurin, A. V. (2020) "Vychislitel'noye modelirovaniye otverzhdeniya karkasa naduvnoy antenny sputnika na okolozemnoy orbite", Vychislitel'naya mekhanika sploshnykh sred, vol. 13, № 4, pp. 414-423. doi: 10.7242/1999-6691/2020.13.4.32. EDN PDFKAL
  7. Beliaev, A. Yu., Svistkov, A. L. (2017) "Modelirovaniye otverzhdayemykh tsilindricheskikh elementov naduvnoy antenny nanosputnika", Vestnik Permskogo universiteta. Fizika, № 4(38), pp. 5-10. doi: 10.17072/1994-3598-2017-4-5-10. EDN ZXNXMN.
  8. Tulin, D. V., Finchenko, V. S. (2014) "Teoretiko-eksperimental'nyye metody proyektirovaniya sistem obespecheniya teplovogo rezhima kosmicheskikh apparatov", Proyektirovaniye avtomaticheskikh kosmicheskikh apparatov dlya fundamental'nykh nauchnykh issledovaniy, vol. 3, pp. 1320-1437. EDN VNSMWX.
  9. Demin, D.S., Kononenko, P.I. and Lebedenko, V.I. (2021) "Kontseptsiya bortovogo radiolokatora na osnove AFAR s ispol'zovaniyem reflektora c otverzhdayemym pnevmokarkasom", Trudy MAI, № 119. doi: 10.34759/trd-2021-119-12.
  10. Bayeva, Yu. V., Lapovok, Ye. V. and Khankov, S. I. (2013) "Analiticheskaya metodika rascheta teplovykh potokov v okolozemnom prostranstve, formiruyushchikh teplovoy rezhim kosmicheskikh teleskopov", Opticheskiy zhurnal, vol. 80, № 5, pp. 30-37. EDN TQNXNZ.
  11. Elweteedy, Ahmed & Elmaihy, Ali & Elhefnawy, Ahmed. Small (2021) "Satellite Operational Phase Thermal Analysis and Design: A Comparative Study", INCAS BULLETIN, vol. 13, pp. 59-74. 10.13111/2066-8201.2021.13.4.6.
  12. Bayeva, Yu. V., Lapovok, Ye. V. and Khankov, S. I. (2013) “Metodika rascheta nestatsionarnykh temperatur kosmicheskogo ob"yekta, dvizhushchegosya po ellipticheskoy orbite”, Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki. № 6(88), pp. 67-72. EDN RKOLXJ.
  13. Qiao Tan, Fengfeng Li, Liwu Liu, Yanju Liu, Jinsong Leng (2023) "Effects of vacuum thermal cycling, ultraviolet radiation and atomic oxygen on the mechanical properties of carbon fiber/epoxy shape memory polymer composite", Polymer Testing, vol. 118. 107915. https://doi.org/10.1016/j.polymertesting.2022.107915.
  14. Marjan Moghanipour, Maryam Kiani, Seid H. Pourtakdoust (2023) "Radiation based satellite attitude and thermal parameters estimation considering conduction effect", Advances in Space Research, vol. 72. i. 10. pp. 4517-4530. doi: 10.1016/j.asr.2023.08.042.
  15. Kaihua Zhang, Yitong Lv, Biyuan Wu, Kun Yu, Yufang Liu, Xiaohu Wu (2024) "A theoretical study on the effect of protective layer on the solar absorption and infrared emittance of spacecraft smart thermal control devices", Optics & Laser Technology, vol. 169. 110087. https://doi.org/10.1016/j.optlastec.2023.110087.
  16. Yevlampiyeva, S. Ye., Beliaev, A. Yu., Mal'tsev, M. S. and Svistkov, A. L. (2017) "Analiz temperaturnogo rezhima otverzhdayemykh naduvnykh elementov antenn nanosputnikov", Mekhanika kompozitsionnykh materialov i konstruktsiy, vol. 23, pp. 459-469. doi: 10.25590/mkmk.ras.2017.23.04.459_469.01.
  17. Garishin, O. K., Svistkov, A. L., Beliaev, A. Yu. and Gilev, V. G. (2018) "On the possibility of using epoxy prepregs for carcass-inflatable nanosatellite antennas", Material Science Forum, vol. 938, pp. 156-163. doi: 10.4028/ href='www.scientific.net/' target='_blank'>www.scientific.net/ msf.938.156.
  18. Dement'yev, I. I., Ustinov, A. N., Atamasov, V. D. et al. (2015) "Trekhmernaya matematicheskaya model' napryazhenno-deformirovannogo sostoyaniya krupnogabaritnogo kompozitnogo vynosnogo elementa konstruktsii kosmicheskogo apparata", Al'manakh sovremennoy nauki i obrazovaniya, № 1(91), pp. 39-48. EDN TBYHCV.
  19. Denisova, L. V., Kalinin, D. Yu. and Reznik, S. V. (2011) "Teoreticheskiye i eksperimental'nyye issledovaniya teplovykh rezhimov setchatykh reflektorov kosmicheskikh antenn", Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Mashinostroyeniye, № 1(82), pp. 92-105. EDN NDXJKV.
  20. Ponomarev, V. S., Ponomarev, S. V. and Khalimanovich, V. I. (2016) "Termomekhanicheskiy analiz krupnogabaritnogo setchatogo reflektora kosmicheskogo naznacheniya", Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva, vol. 17, № 2, pp. 343-358. EDN XAYYZX.
  21. Testoyedov, N. A., Dvirnyy, G. V. and Permyakov, M. Yu. (2011) "Opredeleniye velichiny temperaturnoy deformatsii razmerostabil'nykh reflektorov", Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva. № 2(35), pp. 67-71. EDN NXUZIP.
  22. Lingyi Wang, Hao Zhu, Wei Xu, Nanyu Meng (2024) "Thermal-structural analysis of a large space hoop-column antenna under unidirectional solar radiations", Thin-Walled Structures. vol. 198. 111695. https://doi.org/10.1016/j.tws.2024.111695.
  23. Zhiqi Shi, Qinghua Zhou, Hao Zhu, Wanyou Yang, Nanyu Meng (2024) "Thermal-dynamic coupling analysis of space truss antennas in actual space thermal environment", Engineering Structures. vol. 298. 117020. doi: 10.1016/j.engstruct.2023.117020.
  24. Zheleznyak, V.G., Chursova, L.V. (2014) "Modifikatsiya svyazuyushchikh i matrits na ikh osnove s tsel'yu povysheniya vyazkosti razrusheniya", Aviatsionnyye materialy i tekhnologii. № 1, pp. 47-50. doi: 10.18577/2071-9140-2014-0-1-47-50.
  25. Kazakovtsev, V. P., Koryanov, V. V., Prosuntsov, P. V. and Toporkov, A. G. (2016) "Raschet usloviy osveshchennosti v protsesse vyvedeniya kosmicheskogo apparata na geostatsionarnuyu orbitu", Inzhenernyy zhurnal: nauka i innovatsii. № 12(60), pp. 4. doi: 10.18698/2308-6033-2016-12-1568. EDN XEQDWL.
  26. Aslanyan, R. O., Anisimov, D. I., Marchenko, I. A. and Panteleyev, V. I. (2017) "Imitatory solnechnogo izlucheniya dlya termovakuumnykh ispytaniy kosmicheskogo apparata", Sibirskiy zhurnal nauki i tekhnologiy, vol. 18, № 2, pp. 323-327. EDN YMACUC.
  27. Terekhov, S.V. (2023) "Teplovyye svoystva metallov", Spravochnik. Donetsk: GBU "Donetskiy fiziko-tekhnicheskiy institut im. A.A. Galkina". 184 p.
  28. Zigel' R., Khauell Dzh. (1975) Teploobmen izlucheniyem: Per. s angl. / M.: Mir, p. 934.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».