Spectral Properties of the "Reaction-Diffusion" System Operators and Bifurcations Signs
- Авторлар: Yumagulov M.G.1, Vasenina N.A.1
-
Мекемелер:
- Ufa University of Science and Technology
- Шығарылым: № 2 (65) (2024)
- Беттер: 17-25
- Бөлім: Mathematics
- URL: https://journal-vniispk.ru/1993-0550/article/view/307272
- DOI: https://doi.org/10.17072/1993-0550-2024-2-17-25
- ID: 307272
Дәйексөз келтіру
Толық мәтін
Аннотация
The article discusses differential equations that arise when modeling reaction-diffusion systems. Questions about the stability of equilibrium points in critical cases, as well as about bifurcations in the vicinity of such points, are studied. The main attention is paid to the linearized problem operators spectral properties study. The spectrum discreteness was established, the root properties and invariant subspaces were studied, and formulas for eigenfunctions were proposed. As an application, questions about the multiple equilibrium bifurcation signs and Andronov –Hopf bifurcation in the vicinity of equilibrium points are discussed. Examples are given to illustrate the proposed approaches effectiveness in studying stability and bifurcations problems.
Авторлар туралы
M. Yumagulov
Ufa University of Science and Technology
Хат алмасуға жауапты Автор.
Email: yum_mg@mail.ru
Doctor of Physical and Mathematical Sciences, Professor 32, Zaki Validi St., Ufa, Republic of Bashkortostan, Russia, 450076
N. Vasenina
Ufa University of Science and Technology
Email: zhiber.na@gmail.com
Candidate of Physical and Mathematical Sciences, Docent 32, Zaki Validi St., Ufa, Republic of Bashkortostan, Russia, 450076
Әдебиет тізімі
- Svirezhev, Yu.M. (1987), "Nelinejnye volny, dissipativnye struktury i katastrofy v ekologii" [Nonlinear waves, dissipative structures and disasters in ecology], Nauka, Moscow, Russia.
- Murray, J.D. (2007), (2008), Mathematical Biology, 3d edition, vol. I, vol. II, Springer-Verlag Springer-Verlag, New York, USA.
- Riznichenko, G.Yu. (2002), "Lekcii po matematicheskim modelyam v biologii" [Lectures on mathematical models in biology], Regular and chaotic dynamics, Moscow-Izhevsk, Russia.
- Landa, P.S. (2015), "Nelinejnye kolebaniya i volny" [Nonlinear oscillations and waves], Book house "LIBROKOM", Moscow, Russia.
- Field, R and Burger, M. (1988), " Kolebaniya i begushchie volny v himicheskih sistemah" [Oscillations and traveling waves in chemical systems], Mir, Moscow, Russia.
- Bratus, A.S., Novozhilov, A.S. and Platonov, A.P., (2010), "Dinamicheskie sistemy i modeli biologii" [Dynamic systems and models of biology], FIZMATLIT, Moscow, Russia.
- Hassard, B., Kazarinov, N. and Wang, I. (1985), "Teoriya i prilozheniya bifurkacii rozhdeniya cikla" [Theory and applications of cycle birth bifurcation], Mir, Moscow, Russia.
- Marsden J. and McCracken M. (1980), "Bifurkaciya rozhdeniya cikla i ee prilozheniya" [Bifurcation of the birth of a cycle and its applications], Mir, Moscow, Russia.
- Goryunov, V.E. (2018.), "Andronov–Hopf bifurcation in one biophysical model of the Belousov reaction", Modeling and analysis of information systems, vol. 25, no. 1, pp. 63-70.
- Yumagulov, M.G. and Sidelnikova, N.A. (2023), "Systems of the "reaction-diffusion" type: signs of stability and bifurcations", Bulletin of the Bashkir University, vol. 28, no. 4, pp. 303-309.
- Yumagulov, M.G., Abushahmina, G.R. and Gu-sarova, N.I. (2021), "Lyapunov quantities for Andronov–Hopf bifurcation problem in reaction-diffusion system", Lobachevskii Journal of Mathematics, vol. 42, no. 15, p. 3567-3573.
- Henry, D. (1985), "Geometricheskaya teoriya polulinejnyh parabolicheskih uravnenij" [Geometric theory of semi-linear parabolic equations], Mir, Moscow, Russia.
- Reed, M. and Simon, B. (1982), "Metody sovremennoj matematicheskoj fiziki. Analiz operatorov" [Methods of modern mathematical physics. Operator analysis], vol. 4, Mir, Moscow, Russia.
- Zhiber, A.V., Mukhametova, G.Z. and Sidelnikova, N.A. (2020), "Osnovnye differencial'nye uravneniya matematicheskoj fiziki" [Basic differential equations of mathematical physics], RIC BashSU, Ufa, Russia.
- Borina, M.Yu. and Polezhaev, A.A. (2011), "Diffusion instability in a three-component reac-tion-diffusion model", Computer research and modeling, vol. 3, no. 2, p. 135-146.
- Elenin, E.G. and Kurkina, E.S. (1994), "Diffusion instability in three-component systems of the reaction-diffusion type. Reaction (NO+CO)/Pt(100)", Mathematical modeling, vol. 6, no. 8, pp. 17–32.
- Yumagulov, M.G. (2022), "Vvedenie v nelinej-nuyu dinamiku: teoriya, prilozheniya, modeli" [Introduction to nonlinear dynamics: theory, applications, models], Lan, St. Petersburg, Russia.
Қосымша файлдар


