Gyrostat Dynamics in the Light Field of Semi-Euclidean Space
- 作者: Makeev N.N.1
-
隶属关系:
- Saratov State University
- 期: 编号 3 (66) (2024)
- 页面: 35-46
- 栏目: Mechanics
- URL: https://journal-vniispk.ru/1993-0550/article/view/307281
- DOI: https://doi.org/10.17072/1993-0550-2024-3-35-46
- ID: 307281
如何引用文章
全文:
详细
The motion of a gyrostat in a stationary field of light pressure forces in semi-Euclidean space is investigated. A gyrostat with kinetic axial symmetry and a constant gyrostatic moment moves so that its carrier rotates around the center of inertia. The field of light pressure forces is generated by a stationary light flux of constant intensity, formed by parallel rays of light, and is assumed to be conservative. Based on an improved thermomechanical model of the dynamic interaction of light radiation with a solid surface, a dynamic system is constructed and the limited problem of studying pendulum motion of a special type is considered. Analytical time dependences of the components of the gyrostat angular velocity vector and its orientation parameters are obtained. The parametric equations of the moving hodograph of the gyrostat angular velocity vector and the explicit equation of its bearing surface are found.
作者简介
N. Makeev
Saratov State University
编辑信件的主要联系方式.
Email: nmakeyev@mail.ru
Doctor of Physical and Mathematical Sciences, Professor
Saratov, Russia, 410000参考
- Kogan, A. Yu., Kirsanova, T. S. (1992), "Termomekhanicheskie yavleniya v dvizhenii otnositel`no tsentra mass kosmicheskogo apparata s solnechnym stabilizatorom", Kos-micheskie issledovaniy, vol. 30, issue 3, pp. 312-320.
- Kosoglyad, E. I. (1970), "Dvizhenie tverdogo tela pod deystviem sil na ploskosti Loba-chevskogo" Izvestiya vuzov. Matematika, no. 9 (100), pp. 59-68.
- Makeev, N. N. (2024), "Dvizhenie girostata vokrug tsentra inertsii v poluevklidovom prostranstve", Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, issue 2 (65), pp. 42-53. doi: 10.17072/1993-0550-2024-2-42-53. Russia.
- Obmorshev, A. N. (1965), "Vvedenie v teoriyu kolebaniy", Nauka, Moscow, Russia.
- Uitteker, E. T. and Vatson, Dzh. N. (1963), "Kurs sovremennogo analiza. V 2 Ch." [A course in modern analysis. In 2 parts], Fizmatlit, Moscow, Russia.
- Kolmogorov, A. N., Petrovskiy, I. G. and Piskunov, N. S. (1975), "Issledovanie urav-neniya diffuzii, soedinennoy s vozrastaniem kolichestva veshchestva", Voprosy kibernetiki, issue 12, pp. 3-30.
补充文件


