Использование марковских моделей со множеством состояний для прогнозирования вероятности дефолта заемщиков

Обложка

Цитировать

Полный текст

Аннотация

Введение. После кризисов кредиторы осознали важность оценки риска дефолта по портфелям займов в различных экономических условиях. Моделирование оценки кредитного риска происходит преимущественно с использованием внутренних рейтингов банков, основанных на вероятностных моделях дефолтов заемщиков за определенный период времени. Теоретические модели. Рассмотрены три модели. Первая – наивная марковская модель с R состояниями. Приводится матрица переходов. Вторая – марковская модель со множеством состояний с ковариатами. В качестве ковариат предложены макроэкономические показатели. Третья модель – мультиномиальная логит-регрессия. Апробация марковских моделей и мультиномиальной регрессии на симулированных и реальных данных о дефолтах заемщиков. Исследуется возможность использования марковских моделей с несколькими состояниями для предсказания дефолтов заемщиков в финансовых учреждениях с течением времени. Рассматриваются три подхода для моделирования кредитного риска. Первый подход предполагает, что матрица вероятностей переходов постоянна стечением времени, а остатки марковской модели и логистической регрессии учитываются в дальнейшем при прогнозировании на временной горизонт. Второй дополнен моделью Маркова, которая учитывает влияние на миграцию рисков дефолтов, как индивидуальных факторов заемщиков, так и экономической обстановки в стране. Используя ковариаты, модели позволили одновременно оценить скорость перехода и вероятности ошибочной классификации состояний. Рассмотрена модель мультиномиальной логистической регрессии для сравнения результатов, полученных с использованием марковских моделей с несколькими состояниями. Предлагаемые модели тестируются как на реальных, так и на симулированных данных. Выводы. Представленные модели показывают хорошие прогностические результаты с высокой точностью оценки дефолтов. Модели достаточно хорошо воспроизводят структуру сгенерированных данных. Особенностью модели мультиномиальной регрессии в предсказании дефолтов можно считать то, что она хорошо настраивается, а марковские модели оценивают вероятности дефолтов. Для реализации модели было использовано программное обеспечение – пакет R.

Об авторах

Владимир Алексеевич Балаш

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

410028, Россия, г. Саратов, ул. Астраханская, 83

Ольга Сергеевна Балаш

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

410028, Россия, г. Саратов, ул. Астраханская, 83

Алексей Раисович Файзлиев

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

410028, Россия, г. Саратов, ул. Астраханская, 83

Список литературы

  1. Антонов А., Сорокин Р. Оптимизация моделей оценки вероятности дефолта в кризисных условиях // Риск-менеджмент в кредитных организациях. 2020. № 2 (38). С. 20–36.
  2. Hosmer D. W., Lemeshow S. Applied Logistic Regression. 2nd ed. New York ; Wiley, 2000. 374 p. https://doi.org/10.1002/0471722146
  3. Hosmer D. W., Lemeshow S., May S. Applied Survival Analysis: Regression Modeling of Time-to-Event Data. 2nd ed. Hoboken, NJ : John Wiley & Sons, 2008. 392 p.
  4. Paes A. T., Lima A. С. A SAS macro for estimating transition probabilities in semiparametric models for recurrent events // Comput Methods Programs Biomed. 2004. Vol. 75, iss. 1. P. 59–65. https://doi.org/10.1016/j. cmpb.2003.08.007
  5. Hougaard P. Multi-state models: A review // Lifetime Data Analysis. 1999. Vol. 5, iss. 3. P. 239–264. https://doi.org/10.1023/a:1009672031531
  6. Thomas L. С. Consumer Credit Models: Pricing, Profit and Portfolio. Oxford : Oxford University Press, 2009. 386 p. https://doi.org/10.1093/acprof:oso/9780199232130.001.1
  7. So M. M. С., Thomas L. С. Modeling and model validation of the impact of the economy on the credit risk of credit card portfolios // The Journal of Risk Model Validation. 2010. Vol. 4, iss. 4. P. 93–126. https://doi.org/10.21314/JRMV.2010.064
  8. Jackson С. H. Multi-state modeling with R: The MSM package version 0.6. London : Imperial College. Retrieved in 16 July 2013. URL: https://cran.r-project.org/web/packages/msm/vignettes/msm-manual.pdf (дата обращения: 01.12.2022).
  9. Kalbfl eisch J. D., Lawles J. F. The Analysis of Panel Data under a Markov Assumption // Journal of the American Statistical Association. 1985. Vol. 80, № 392. P. 863–871. https://doi.org/10.2307/2288545

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».