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A B S T R A C T

Introduction: Machining hard materials and shape memory alloys (SMAs), such as NiTi, NiCu, and BeCu, 
using conventional techniques is challenging due to excessive tool wear and poor surface finish. Non-conventional 
machining methods, particularly electrical discharge machining (EDM), offer improved precision and surface quality. 
However, the effectiveness of EDM is contingent upon the optimization of process parameters. The purpose of this 
study is to optimize EDM parameters to enhance the machining performance of SMAs by considering factors such 
as pulse-on time, pulse-off time, discharge current, gap voltage, and workpiece electrical conductivity. Methods. 
In this study, the Taguchi experimental design approach was employed to analyze the influence of key process 
parameters on the material removal rate (MRR), surface roughness (SR), and tool wear rate (TWR). Analysis of variance 
(ANOVA) was then applied to identify the most statistically significant factors affecting machining performance.  
A multi-objective optimization method, based on utility theory, was utilized to determine the optimal EDM settings 
that balance MRR, SR, and TWR. The results were validated through experimental trials. Results and Discussion. The 
experimental results indicated that Trial 15 achieved the highest MRR of 9.076 mm³/min, while Trial 1 produced the lowest 
SR of 2.238 µm. The minimum TWR of 0.041 mm³/min was observed in Trial 10, which contributes to increased tool lifespan. 
ANOVA revealed that gap voltage was the most influential factor, accounting for 85.98 % of the variation in machining 
performance, followed by discharge current (4.76 %) and pulse-off time (2.59 %). The multi-objective optimization process 
successfully identified parameter configurations that optimize MRR while minimizing SR and TWR. The prediction model 
developed in this study demonstrated high accuracy, with an R² value of 93.3% and an adjusted R² of 89.7%. Validation 
experiments confirmed the effectiveness of the optimized parameters, resulting in an average MRR of 8.852 mm³/min, 
SR of 2.818 µm, and TWR of 0.148 mm³/min. The findings presented herein confirm that careful optimization of EDM 
parameters significantly enhances the machining performance of SMAs, considerably improving machining efficiency and 
tool longevity.
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Introduction

Advanced non-conventional electrical discharge machining (EDM) is an electro-thermal process where 
material is removed from a workpiece by means of electrical discharges (sparks). EDM is widely used in 
the manufacturing of shape memory alloy (SMA) components, ceramics, and composite materials due to its 
ability to provide high precision and geometric complexity [1]. EDM is considered one of the most effective 
methods for processing difficult-to-machine materials such as high-strength, brittle, and hard alloys, as it 
does not require the application of mechanical force [2].

During the EDM process, thermal energy required for material removal is generated by electrical sparks 
occurring in a dielectric fluid. Localized, intense heating caused by continuous electrical breakdowns leads 
to melting and vaporization of the workpiece material. The dielectric fluid performs several important 
functions: removing erosion products, cooling the workpiece, and preventing arc discharges [3].

Two types of EDM machines are distinguished: sinker EDM and wire EDM (WEDM). The selection of 
a specific type of EDM is determined by the application requirements, as well as the material properties 
and geometric parameters of the part being manufactured [4]. EDM enables the machining of electrically 
conductive materials with a wide range of mechanical properties. Due to its high precision and ability to 
meet specified surface quality requirements, EDM technology is in demand in the aerospace, automotive, 
biomedical industries, and in the manufacture of tools and dies [5].

EDM efficiency is determined by numerous process parameters, including discharge energy characteristics 
(pulse-on time and pulse-off time, current, gap voltage, spark gap), the type of electrode and dielectric fluid, 
flushing pressure, and cycle duration. Optimizing these parameters is a key factor in achieving maximum 
productivity (material removal rate), minimum surface roughness, and increased tool life [6].

Research in the field of EDM machining of advanced materials often includes parametric studies aimed 
at studying the influence of process parameters on material removal rate (MRR, Q), surface roughness 
(SR, Ra), and tool wear rate (TWR, υh). These studies typically include an assessment of the underlying 
physical processes accompanied by parameter optimization methods. The results of such studies enable the 
development of EDM technologies suitable for high-performance applications requiring precise processing 
of difficult-to-machine materials [7].

Due to their improved mechanical and thermal properties, shape memory alloys (NiTi), Monel alloy 
(NiCu), and beryllium bronze (BeCu) are finding increasingly wide application, which increases the 
demand for EDM as an effective method for their processing. NiTi shape memory alloys exhibit both the 
shape memory effect and superelasticity, making them in demand in biomedical devices, the aerospace 
industry, and robotic systems [8]. Important properties of NiTi alloys include high corrosion resistance, 
biocompatibility, and the ability to elastically recover after deformation. EDM is the preferred method for 
processing such materials, as conventional machining methods are often ineffective due to the high strength 
and toughness of these alloys.

The NiCu material known as Monel alloy is characterized by excellent corrosion resistance combined 
with high mechanical strength and thermal stability. These properties make Monel alloy suitable for 
applications in marine environments, the chemical industry, and the aerospace sector. The difficulty in 
machining Monel alloy is related to the effect of strain hardening and high toughness, which makes EDM 
an optimal solution.

Beryllium bronze (BeCu) combines high strength, thermal conductivity, and corrosion resistance. The 
primary application areas of this alloy include electronic connectors, aerospace components, and tooling 
elements for injection casting. Hardening of beryllium bronze increases its strength, but the material 
becomes difficult to machine due to heat generation and tool wear [9].

To enhance the efficiency of the EDM process and reduce machining time, it is necessary to increase 
the material removal rate (MRR, Q). Surface roughness (SR, Ra) is an important quality indicator that 
determines the smoothness of the machined surface. SR is influenced by factors such as discharge energy, 
spark gap size, and dielectric fluid flushing conditions. When used in areas requiring precision machining, 
high surface quality requirements are imposed, which are achieved by minimizing SR values.
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Tool wear rate (TWR, υh) characterizes the rate of electrode material loss during the EDM process [10]. 
TWR depends on the gap current, electrode material, and dielectric fluid properties. Minimizing TWR is 
essential for reducing tool costs and increasing the economic efficiency of the process.

As a result of rapid solidification of the molten material removed by electrical discharge, a hardened 
layer known as the “recast layer” of a certain thickness is formed. Controlling the thickness of the recast 
layer is achieved by optimizing EDM parameters [11]. The area around the machined surface is subjected 
to thermal effects, forming a heat-affected zone (HAZ). Significant HAZ dimensions can lead to residual 
stresses and microcracks that affect the mechanical properties of the component. Managing the pulse energy 
and effectively using the dielectric fluid allows for improved thermal management. The microhardness of 
the machined surface may change due to thermal effects, which must be considered when evaluating the 
material characteristics after EDM [12].

Dimensional accuracy and overcut characterize the deviation of the machined part’s dimensions from 
the specified values. The amount of overcut is influenced by the size of the spark gap, the pulse-on time, 
and tool wear. Achieving high dimensional accuracy is critical for the production of precision components. 
Adjusting the EDM process parameters allows for increased productivity, improved surface quality, and 
extended tool life in accordance with industry standards [13].

The Taguchi method is an effective statistical optimization technique widely used for various 
technological processes, including EDM. This method allows researchers to plan efficient experiments, 
optimizing process parameters with a minimal number of experimental runs. The main concept of the 
Taguchi method relies on orthogonal arrays (OAs) to simultaneously study the influence of several factors 
on the process output parameters [14]. The L18 OA is often used for EDM optimization, as it provides 
an effective assessment of the influence of various levels of process parameters. The L18 array allows 
the analysis of up to eight factors, using two or three different levels of parameters, which is suitable for 
studying the main EDM parameters, such as pulse-on time, pulse-off time, current, and voltage [15].

Process optimization using the Taguchi method is based on the analysis of the signal-to-noise (S/N) ratio 
to determine the optimal values of parameters that provide the desired machining results. Three standard 
S/N ratio criteria are used in EDM studies: “Smaller-the-better” for minimizing SR and TWR, “Larger-
the-better” for maximizing MRR, and “Nominal-the-best” for ensuring precision dimensional control. 
The Taguchi method can improve the efficiency of EDM by identifying optimal machining conditions by 
minimizing number of experiments and reducing cost and execution time while improving surface integrity 
and output productivity [16].

In the EDM process, several performance metrics must be considered simultaneously, as it requires 
achieving extreme MRR along with minimum SR and TWR. For balanced optimization of these competing 
criteria, the Utility method is often used, which is a popular tool for multi-criteria optimization. The Utility 
method transforms different output variables into a single combined index, simplifying the decision-
making process. The application of the Utility method for EDM optimization involves the following 
steps: normalization of response values (bringing different performance characteristics to a comparable 
scale), assigning weights to each response based on its relative importance, and calculating a single utility 
value by multiplying the normalized values by the corresponding weights and summing the results. The 
optimal combination of process parameters is determined based on the maximum utility value, after 
which experimental verification is performed. The application of the Utility method allows manufacturers 
to find optimal parameter settings, providing an effective framework for balanced optimization of EDM 
performance indicators [17].

As a result of applying the Utility method, optimization of three key performance parameters of the 
EDM process was achieved, namely, MRR, SR, and TWR. The use of this method made it possible to 
balance the requirements for production speed and the quality of the machined surface. The integration of 
weighted normalization methods into the decision-making system improved its accuracy and reliability. 
The high process efficiency was made possible through the application of the Taguchi method, which 
provides a systematic study of the influence of EDM parameters with a minimal experimental test runs. The 
analysis of the S/N ratio allowed identifying critical parameters needed for accurate process optimization. 
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In addition, it was established that the electrical conductivity of the workpiece material, along with current 
and voltage measurements in the discharge, has a significant impact on machining performance and, in 
particular, on surface smoothness [18].

A detailed study of the machining methods of shape memory alloys (SMAs) was carried out, in which the 
effectiveness of EDM and its variations, including conventional die-sinking EDM and die-sinking micro-
EDM, were evaluated. SMAs, possessing unique properties such as the shape memory effect, superelasticity, 
high corrosion resistance, and biocompatibility, particularly NiTi-based alloys and copper-based alloys, 
are widely in demand in various applications. EDM is a promising alternative to conventional machining 
methods, as it can solve problems related to tool wear, ensure high machining accuracy, and enables low-
accuracy CNC machining. The present study focuses on analyzing the influence of EDM input parameters 
on response behavior when machining SMAs, with an emphasis on NiTi alloy systems.

The review examines various optimization strategies for EDM parameters, focusing on non-conventional 
approaches in addition to widely used statistical methods and multi-criteria decision-making methods. 
Particular attention is paid to both hybrid EDM methods and advanced technological approaches used in 
the processing of shape memory alloys [19].

An extensive review is devoted to the machining of shape memory alloys by EDM, with an emphasis 
on methods for processing NiTi-based SMAs. The wide industrial implementation of SMAs as industrial 
materials is emphasized due to their remarkable properties, finding applications in orthopedic implants, 
actuators, aerospace components, and biomedical devices.

It is noted that efficient machining of NiTi SMAs remains a complex challenge. This review analyzes 
experimental, theoretical as well as modeling and optimization-based approaches used to describe EDM, 
WEDM, and conventional machining processes for SMAs.

It is emphasized that improving machining efficiency requires optimal selection of process parameters, 
suitable electrode tools, and dielectric fluids. Among EDM methods, WEDM is the most extensively studied 
in the context of SMA cutting, outpacing die-sinking EDM and powder-mixed EDM used to enhance SMA 
processing performance and accuracy [20].

Several studies have investigated the optimization of WEDM process parameters for Nitinol shape 
memory alloys (nitinol – nickel-titanium alloy), which exhibit the ability to return to their original shape under 
the influence of thermal or mechanical factors. In [21], desirability function analysis (DFA) combined with 
the analytic hierarchy process (AHP) is used within a multi-criteria decision making (MCDM) framework 
to determine optimal machining conditions. The influence of four WEDM input parameters, namely, pulse-
on time, pulse-off time, wire tension, and wire feed, on kerf width, MRR, and SR was investigated. Based on 
DFA-AHP methods, the optimal machining parameters were determined to be: pulse-on time 120 μs, pulse-off 
time 55 μs, wire tension 8 kgf, and wire feed 3 m/min. The results were confirmed by S/N ratio analysis using 
the Taguchi method. The combination of results showed that the MCDM approach successfully identifies 
effective process parameters to enhance the performance during the WEDM processing of Nitinol [21].

In [22], the WEDM of superelastic nickel-titanium SMA (Ni54.1Ti), driven by the difficulties of traditional 
machining methods investigated is studied. NiTi-based alloys require precision machining methods, 
especially in critical applications such as the medical industry. The assessment focused on the impact of 
pulse-on time, pulse-off time, and gap current on two key output metrics: MRR and SR. Experiments that 
systematically assessed these parameters were designed using a Taguchi L27 mixed orthogonal array (L27 
OA) and demonstrated that pulse-on time is a key parameter influencing the MRR and SR values [22]. The 
optimization of surface roughness of NiTi SMA in EDM using the Taguchi method was investigated in [23]. 
NiTi-based alloys are widely used as “smart” materials in various industries, including the security industry, 
the maritime sector, and the aerospace field, due to their unique properties. Due to the high hardness of 
this material, processing with conventional tools presents significant difficulties, making EDM a suitable 
solution. The machining quality of NiTi largely depends on surface roughness parameters. EDM process 
variables were optimized using a systematic Taguchi method to improve performance. The research results 
demonstrate the possibility of improving the surface quality of NiTi-based alloys and, therefore, confirm the 
effectiveness of EDM as a precision machining method for this challenging material [23].
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Despite the difficulty in machining nickel-titanium (NiTi) SMA using conventional methods, EDM 
provides optimal performance when working with this material. However, high tool wear in EDM of NiTi 
leads to a reduction in the material removal rate. The study presented in [24] was aimed at maximizing MRR 
and minimizing TWR using the Taguchi method and the utility principle. Experiments were conducted on 
a die-sinking EDM machine in a liquid dielectric using a Taguchi L36 mixed orthogonal array (22×33). 
NiTi alloy was used as the workpiece material, and copper was used as the electrode tool. Taguchi analysis 
revealed that workpiece and tool electrode electrical conductivity, gap current, and pulse-on time are the key 
factors influencing MRR and TWR. It was found that an MRR of 6.31 mm³/min and a TWR of 0.031 mm³/
min are achieved with the following parameters: workpiece conductivity of 4219 S/m, tool conductivity of 
26316 S/m, gap current of 16 A, and pulse-on time of 38 µs [24].

Reference [25] investigates the feasibility of processing nickel-titanium (NiTi) SMAs using EDM with 
copper, graphite, and tungsten-copper electrodes, and dielectric 358 as the dielectric fluid. The EDM process 
parameters included three levels of current (6, 12, and 18 A) combined with three values of pulse-on time 
(200, 400, and 600 µs) at a constant voltage of 3 V and a fixed pulse-off time of 50 µs. The primary objective 
was to determine the optimal settings to maximize MRR and minimize SR for NiTi shape memory alloys. 
The surface analysis of the workpiece included the examination of the electrode size and length using 
scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) to assess electrode 
material adhesion to the workpiece. Analysis of variance (ANOVA) was employed as a statistical method to 
determine the significance of process parameters. The differences between electrode materials were found 
to be relatively minor, and overcut was identified as the dominant factor influencing MRR and SR. Surface 
examination revealed the presence of surface defects in the form of droplets, debris, lumps, microcracks, 
and holes. Elevated SR values were associated with Cu and W residues from the electrode adhering to the 
workpiece due to insufficient dielectric rinsing [25].

Study [26] optimized the experimental conditions for surface milling of NiTi SMA under dry cutting 
conditions. The research aimed to achieve the lowest Ra and the minimal Vb using an uncoated tungsten 
carbide tool with a nose radius of 0.4 mm or 0.8 mm. Milling experiments were conducted at three cutting 
speeds (20, 35, and 50 m/min) and three feed rates (0.03, 0.07, and 0.14 mm/tooth) with a fixed axial depth 
of cut of 0.7 mm. A Taguchi L18 orthogonal array was used as the design of experiment (DOE) method, 
utilizing Minitab 17 software for data analysis. The analysis of variance (ANOVA) revealed that the cutting 
tool nose radius is the primary factor determining surface roughness, while the feed rate (fz) has the greatest 
impact on flank wear (Vb). Confirmation tests verified that the optimal machining parameters accurately 
predict the results of the laboratory experiments, indicating the success of the optimization process [26].

The optimization of EDM parameters for Cu-based SMA components using machine learning (ML) 
algorithms is described in [27]. The optimization process focused on varying pulse-on time (Ton), pulse-off 
time (Toff), discharge current (Ip), and gap voltage (GV) to minimize tool wear rate (TWR). An empirical 
design of experiments (DoE) approach utilized a central composite design (CCD) in conjunction with 
response surface methodology (RSM) to analyze the machining behavior. The study employed both single- 
and multi-objective optimization using a desirability function approach, as well as genetic algorithms (GA) 
and teaching-learning-based optimization (TLBO) algorithms [27].

The optimization of process parameters significantly improved the efficiency of the corresponding 
machining methods. The innovative aspect of the presented research lies in the application of machine 
learning (ML)-based optimization techniques to the electrical discharge machining (EDM) of Cu-SMAs, 
opening new perspectives for the aerospace, biomedical, and automotive industries. Based on the results 
presented in [27], it can be concluded that precision machining benefits significantly from the implementation 
of “smart” materials and data-driven optimization methods.

A comprehensive analysis of existing shape memory alloys (SMAs) processing methods was conducted, 
encompassing both conventional and non-conventional approaches. The review includes research on 
waterjet machining (WJM), cryogenic machining, wire electrical discharge machining (WEDM), electrical 
discharge machining (EDM), and electrochemical machining. Key factors determining the performance 
and limitations of the considered processes are material removal rate (MRR), tool wear rate (TWR), surface 
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roughness (SR), and the integrity of the surface layer. Based on the analysis, the most effective SMAs 
machining methods were identified [28].

The optimization process of electrical discharge machining (EDM) for a high-temperature high-entropy 
shape memory alloy (HT-HE-SMA) with a composition of 35Ni-35Ti-15Zr-10Cu-5Sn using a copper 
electrode is considered. It is emphasized that EDM is an effective method for machining complex-geometry 
parts from difficult-to-machine materials, and optimizing EDM process parameters can significantly 
improve the productivity and quality of the machined surface. The relationship between the input EDM 
process parameters — discharge current (Ip), pulse-on time (Ton), and pulse-off time (Toff) — and the output 
parameters, such as material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR), was 
investigated. Response surface methodology (RSM) using a central composite design (CCD) was applied 
to evaluate the influence of machining parameters, and experimental data collection was performed using 
Minitab 19 software. Based on analysis of variance (ANOVA) at a significance level of 5 %, the most 
significant factors were determined, and the adequacy of the second-order regression models was evaluated. 
It was found that discharge current, pulse-on time, and pulse-off time have a significant effect on MRR, 
TWR, and Ra. The high accuracy of the developed mathematical models was confirmed, as evidenced by 
the high coefficients of determination (R²), reaching 97.82% for MRR, 99.53% for SR, and 95.36% for TWR 
[29].

The optimization of EDM parameters to achieve maximum MRR for NiTi, NiCu, and BeCu alloys was 
performed. Due to the difficulty of processing these advanced materials using conventional methods, EDM 
is considered an effective alternative. It is emphasized that the stability of the EDM process is a complex 
challenge due to the influence of numerous factors. This study investigates the optimization of EDM 
parameters by analyzing the current and voltage in the inter-electrode gap, combined with the control of 
pulse-on time, pulse-off time, and workpiece conductivity. A Taguchi orthogonal array was used for design 
of experiments (DoE), and Taguchi’s S/N ratio and ANOVA were used to determine the most significant 
factors affecting MRR. The results of the study demonstrate that EDM performance is largely dependent on 
the control of current and voltage in the gap, as well as pulse-on and pulse-off time [30].

The surface roughness (SR) and surface crack length (SCL) transformation in the EDM of electrolytic 
oxygen-free copper were evaluated using different processing modes. The influence of cryogenic treatment 
of the workpiece on EDM process parameters was investigated, including workpiece electrical conductivity, 
pulse-on time, pulse-off time, gap voltage, and gap current. The experiments were designed using a Taguchi 
L18 orthogonal array and subjected to statistical analysis. The results showed that gap voltage, pulse-on 
time, and pulse-off time have the greatest influence on SR, while the interaction of workpiece conductivity 
with gap current, pulse-on time, and gap voltage affects the surface crack length. It was found that the surface 
cracks length initially decreases with increasing conductivity and then begins to increase. A decrease in gap 
current leads to an increase in crack length, while an increase in gap voltage promotes a decrease in crack 
length. Machine learning models applied for regression analysis demonstrated high accuracy in predicting 
SCL and SR parameters, achieving a coefficient of determination (R²) exceeding 0.90 [31].

Tool wear rate (TWR) was minimized by optimizing the EDM parameters that influence the accuracy 
and cost-effectiveness of the process. Electrolytic copper was used as the electrode when machining NiTi, 
NiCu, and BeCu alloy workpieces. A Taguchi L18 orthogonal array was used to analyze the influence of 
various factors on TWR. The factors considered were: workpiece conductivity, gap voltage and current, 
pulse-on time, and pulse-off time. ANOVA in combination with Taguchi S/N ratio analysis revealed that 
workpiece material conductivity, pulse-on time, and gap current have the greatest influence on TWR. Based 
on the results, a set of optimal parameters was determined, allowing for reduced tool wear and improved 
EDM productivity [32].

Another study investigated the effect of cryogenic treatment and an external magnetic field on the 
EDM of beryllium bronze (BeCu). Experiments were conducted using different values of gap current, 
magnetic field strength, and pulse-on time, as well as electrolytic copper electrodes. The highest MRR of 
11.807 mm³/min was achieved when machining cryogenically treated BeCu workpieces with untreated 
copper electrodes. Among the parameters studied, only the gap current had a significant influence on MRR, 
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while the influence of pulse-on time and magnetic field strength was insignificant. Analysis of the surface 
microstructure using scanning electron microscopy (SEM) showed that a white layer with a thickness of up 
to 20 μm formed on the BeCu alloy after EDM, with minimal number of surface cracks [33].

Powder-mixed electrical discharge machining (PMEDM), as a promising machining method for 
difficult-to-cut alloys, particularly beryllium bronze (BeCu), is also being considered. The addition of fine 
powder particles to the dielectric fluid in PMEDM promotes increased machining efficiency and stability, 
as well as an increased concentration of spark discharges. A copper electrode was used in the experiments 
with constant pulse-on time, pulse-off time, and gap voltage. The gap current (ranging from 8–14 A) and 
powder concentration (2–6 g/L) were varied. The results showed that increasing the gap current and powder 
concentration leads to an increase in MRR. However, the worsening of flushing conditions at greater depths 
led to an increase in TWR [34].

In addition, the methods of manufacturing and processing beryllium bronze (BeCu)-based composite 
materials were investigated. The composite materials were fabricated using a stir casting, and their properties 
were evaluated using SEM and EDX methods. It was found that increasing the silicon carbide (SiC) particle 
content leads to an increase in material hardness. Abrasive waterjet machining (AWJM) was used to 
evaluate the machining performance of the composites, assessing MRR and hole circularity. The obtained 
parameters were compared with those obtained during EDM. ANOVA allowed for the identification of the 
most significant factors influencing the machining process, and the Taguchi method was used to optimize 
the parameters for achieving high productivity and accuracy [35].

The presented research stands out due to its novel approach to studying the peculiarities of the EDM 
process for three different materials: a shape memory alloy (NiTi), a monel alloy (NiCu), and beryllium 
copper alloy (BeCu). Special attention is paid to the difficulties encountered in processing these materials, 
due to their resistance to strength loss, thermal effects, and mechanical impacts. The results of the research 
can be valuable in industries such as aerospace, biomedical, and tool manufacturing.

The significance of the work is determined by the comprehensive approach, combining investigations 
of EDM characteristics for specific materials, multi-criteria optimization, and experimental verification, all 
of which are aimed at improving high-performance machining methods.

Materials and Methods

The primary purpose of this research was to identify optimal combinations of EDM parameters to 
achieve maximum productivity. The varied parameters included: workpiece material conductivity (S/m), 
gap current (A) and voltage (V), pulse-on time (µs), and pulse-off time (µs). The key output parameters 
characterizing process performance were material removal rate (MRR), surface roughness (SR), and tool 
wear rate (TWR). Therefore, the objective was to maximize the machining rate of difficult-to-machine 
materials through optimal selection of EDM parameters, followed by an evaluation of machinability.

NiTi and NiCu alloys (20 mm diameter, 20 mm length) and BeCu (20×20×30 mm³) were used as 
workpiece materials. Electrolytic copper was selected as the tool electrode material due to its high electrical 
conductivity. A copper rod (6 mm in diameter, 2000 mm in length) was cut and processed on a milling 
machine to obtain rectangular-shaped blanks, from which test samples (4×4×25 mm) were made. A square 
cave measuring 3×3 mm and 5 mm deep was formed in the samples using a tool electrode. The use of 
oxygen-free electrolytic copper ensured high electrical conductivity and wear resistance of the tool during 
the machining process.

The experiments were conducted on an Electronica Machine Tool Limited die-sinking EDM machine, 
model C400x250. Industrial EDM oil was used as the dielectric fluid. Side flushing at a pressure  
of 0.5 kg/cm² provided effective removal of erosion products and stability of the machining process. GR-300 
digital scales (accuracy 0.0001 g) were used to measure MRR and TWR, and a Mitutoyo SJ 210 profilometer 
was used to measure surface roughness (SR). A more detailed description of the manufacturing process, 
experimental methods, and obtained results is presented in the previous work by Vijaykumar S Jatti et al., 
2022 [36].
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A photograph of the die-sinking EDM machine used is shown in Fig. 1. The chemical, physical, and 
thermoelectric properties of the workpiece and tool materials are summarized in Tables 1 and 2, respectively. 
The research methodology is shown schematically in Fig. 2. Material removal rate (MRR) and tool wear 
rate (TWR) were calculated using equations (1) and (2):

	 ∆
ρ


 w m

W
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t
	 (1)

where ΔW is the change in workpiece mass (g); ρw is the workpiece material density (g/cm³); tm is the ma-
chining time (min).

	 ∆
ρ


 t m

T
TWR

t
	 (2)

where ΔT is the change in tool electrode mass (g); ρt is the tool electrode material density (g/cm³); tm is the 
machining time (min).

Fig. 1. EDM die-sinking machine

T a b l e  1

Chemical composition of materials used

Name of the material Ni (%) Ti (%) Be (%) Cu (%)
NiTi alloy 60 40 – –
NiCu alloy 72 – – 28
BeCu alloy – – 2 98
Copper electrode – – – 99.9

The experimental design was developed and implemented using the Taguchi method. To enhance the 
statistical significance of the results, three repeated measurements were conducted for each parameter 
set, which is a requirement of the Taguchi method when using the signal-to-noise (S/N) ratio. The S/N 
ratio is a combined statistic that considers both the average value of the target characteristic and its 
variance distribution. Using this ratio allows for the optimization of process parameters to enhance overall 
performance.
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Physical properties of materials used

Name of the 
material Density (ρ), g/cc Specific heat ca-

pacity (cp), J/gK
Melting point 

(Hm), K
Thermal conduc-
tivity (k), W/mk

Electrical con-
ductivity (σ), 

S/mm
NiTi alloy 6.45 0.320 1583 10 3.268
NiCu alloy 8.8 0.427 1623 21.8 5.515
BeCu alloy 8.25 0.420 1253 130 5.645
Copper elec-
trode 8.94 0.394 1356 391.1 10

Fig. 2. Methodology

Three main types of quality characteristics were used in the calculation of the S/N ratio: “Larger-is-
Better” (LB) for MRR (aiming for the maximum response value), and “Smaller-is-Better” (SB) for TWR and 
SR (aiming for minimization). The “Nominal-is-Best” (NB) category is applied in cases where it is necessary 
to ensure precise adherence to a target value, for example, when maintaining specified dimensions. The 
mathematical expressions for calculating the S/N ratio corresponding to different quality characteristics are 
presented below (3), (4) and (5):
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“Nominal-is-Best”
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where yi is the the value of the parameter obtained in the i-th trial; R is the the number of repetitions of the 
trial; μ is the mean value of the data; σ is the standard deviation of the data.

In the Taguchi experimental design, an L18 orthogonal array was used, selected based on the number 
of process parameters and their defined levels. The design included five parameters: workpiece electrical 
conductivity, gap current, gap voltage, pulse-on time, and pulse-off time. One variable (workpiece electrical 
conductivity) was varied at six levels, and the remaining four were varied at three levels. These parameters 
are designated as A, B, C, D, and E.

Table 3 presents the process parameters and corresponding levels used in the experiments. The Taguchi 
method requires the calculation of degrees of freedom (DoF) to select a suitable orthogonal array for design 
of experiments. The workpiece material electrical conductivity, having six measurement levels, determines 
five degrees of freedom. Each of the remaining four parameters (gap current, gap voltage, pulse-on time, 
and pulse-off time), varied at three levels, has two degrees of freedom per variable. Therefore, the total 
number of DoF is 13. Based on this, a mixed orthogonal array L18 (61 × 34) was chosen as satisfying the 
criterion of possessing seventeen degrees of freedom. The structure of the L18 array is presented in Table 4.

The experiments were conducted in accordance with the Taguchi L18 orthogonal array methodology. 
Two key principles of design of experiments (DoE) were implemented in this study. First, to enhance the 
statistical reliability of the results, the principle of replication was used, involving conducting multiple 
repeated measurements for each parameter set. This allows for improved accuracy in the estimation of 
main effects and their interactions, as well as a proper assessment of experimental error. In this study, three 
repeated measurements were conducted for each parameter combination. Second, data were collected for 
each experimental condition.

Based on the obtained data, the signal-to-noise (S/N) ratio was calculated for each experimental condition 
using equations (3)–(5), according to the selected quality characteristics (MRR, TWR, and SR). Analysis 
of variance (ANOVA) was used to determine the significance of the influence of various EDM process 

T a b l e  3

Process parameters and its levels

Parameters Code Levels
Electrical conduc-
tivity of workpiece 
(S/m)

A
NiTi NiCu BeCu

3268
(untreated)

4219
(treated)

5515
(untreated)

5625
(treated)

5645
(untreated)

5902
(treated)

Gap current (A) B 8 12 16 – – –
Gap voltage (V) C 40 55 70 – – –
Pulse on time (µs) D 13 26 38 – – –
Pulse off time (µs) E 5 7 9 – – –
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Mixed L18 (61 × 34) orthogonal array

Trail 
No.

Parameter
A B C D E

1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 2 1 1 2 2
5 2 2 2 3 3
6 2 3 3 1 1
7 3 1 2 1 3
8 3 2 3 2 1
9 3 3 1 3 2

10 4 1 3 3 2
11 4 2 1 1 3
12 4 3 2 2 1
13 5 1 2 3 1
14 5 2 3 1 2
15 5 3 1 2 3
16 6 1 3 2 3
17 6 2 1 3 1
18 6 3 2 1 2

parameters on the output characteristics. The significant and non-significant parameters of EDM process 
were identified by ANOVA. Statistical data processing was performed using MINITAB 15.0 software.

The main effects plot visually displays the influence of each process parameter on the output 
characteristics, allowing for the assessment of trend changes. The response plot shows the change 
in the value of the output parameter as a function of the change in the level of the input parameter.  
The experimental program was executed three times for each parameter combination, after which data 
were collected. The analysis included both raw data analysis and S/N data analysis to determine the 
significance of the process parameters by comparing the main effects plots constructed based on S/N data 
and raw data.

Utility theory

Optimization based on utility theory allows for the quantitative assessment of product value, considering it 
as a combination of utility levels corresponding to different quality characteristics. The product optimization 
problem is reduced to maximizing overall utility by optimizing the individual utility of each characteristic.

The first step is to determine the optimal levels of the process parameters using the Taguchi method, 
which helps improve performance indicators. Then, a preference scale is established for each response 
(MRR, SR, TWR), taking into account the optimal and minimum values obtained during the experiments. 
The preference scale is constructed based on the following equation (6):

	
'

 log i
i

i

x
P A

x
	 (6)
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where Pi is the preference value for the i-th response; xi is the raw data obtained from the experiment for the 
i-th response; x’i is the smallest acceptable value for the i-th response; A is a constant, defined as:




9

log i

i

A
x
x

 (under optimal conditions)

After determining the preference values for each response, it is necessary to determine the weightage 
(Wi, i = 1, 2, ..., n) for each performance indicator, satisfying the condition (7):

	   1 1n
ii W .	 (7)

Subsequently, for each test condition and repetition, the utility value (U(n,R)) is calculated based on 
equation (8):

	

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where n is the number of performance metrics (1, 2, 3, ..., 18); R is the number of repetitions of each trial 
(1, 2, 3).

After calculating the utility values, to determine the ideal configurations of process parameters, the S/N 
ratio is calculated, considering utility as a “Larger-the-Better” type of characteristic. Then, the average 
response value and confidence interval are calculated using the values of significant parameters. Equations 
(9) and (10) are used to calculate 95 % confidence intervals for confirmation experiments (CICE) and 
populations (CIpop):
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Fα(1, fe) is the F ratio at the confidence level of (1-α) against DOF 1 and error degree of freedom fe; Ve is 
the error variance; R is the sample size for confirmation trials.


1 (               )eff

N
N

DOF associated intheestimateof meanresponse

neff is an effective sample size, calculated as N / (1 + DoF), where N is a total number of findings DoF is the 
total number of degrees of freedom associated with the estimation of the mean response.

Specific values:
Neff = 54/(1+6) = 7.714;
N (total number of results) = 18×3 = 54;
R (sample size for confirmatory trials) = 3;
Ve (error variance) = 0.05087;
fe (error degrees of freedom) = 11.
Conduct the validation trials at the optimum process parameter settings and compare the results with the 

projected mean response values. The assumed weightage of quality characteristics was 0.33 for each MRR, 
SR and TWR (WMRR, WTWR and WSR), and the utility value was calculated using equation 14.

The utility values are calculated for all 18 experimental conditions and three repetitions. Since utility is 
a quality criterion that favors higher values, the utility values were analyzed based on the average utility at 
each parameter level as well as the S/N ratio.
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Results and discussion

The trials were conducted using the Taguchi analysis approach. ANOVA was used to identify the 
key components of the process. The MRR, SR and TWR calculated during the experiment are shown  
in Table 5. This table displays the outcomes of an electrical discharge machining (EDM) experiment, 
whereby the MRR, SR, together with TWR were evaluated using the Taguchi design of experiments. The 
trials were performed under different machining settings, and the associated S/N ratios were determined. 
The S/N ratio was used as a performance metric to determine the optimal machining parameters, with 
higher values preferred for MRR (“larger-the-better”) and lower values for TWR (“smaller-the-better”).

T a b l e  5

Trial results for MRR, SR and TWR

Trail 
No.

MRR (mm3/min) S/N ratio 
(dB)

SR (µm) S/N ratio 
(dB)

TWR (mm3/min) S/N ratio 
(dB)Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 

1 2,096 2,078 2,088 6,3917 2,238 2,244 2,242 7,0101 0,072 0,068 0,073 22,9708
2 4,456 4,556 4,667 13,1740 2,998 3,018 3,010 9,5675 0,109 0,113 0,111 19,0926
3 7,109 7,118 7,112 17,0411 3,704 3,716 3,712 11,3890 0,151 0,148 0,146 16,5744
4 4,011 3,948 3,923 11,9542 2,756 2,764 2,762 8,8203 0,048 0,054 0,052 25,7818
5 6,502 6,498 6,495 16,2560 3,404 3,398 3,406 10,6364 0,088 0,081 0,084 21,4750
6 4,168 4,145 4,152 12,3714 2,806 2,799 2,802 8,9504 0,242 0,234 0,239 12,4555
7 2,803 2,688 2,781 8,8055 2,794 2,786 2,792 8,9142 0,101 0,094 0,098 20,2013
8 3,328 3,336 3,329 10,4515 2,988 2,979 2,984 9,4950 0,159 0,154 0,161 16,0254
9 8,995 8,989 9,027 19,0883 3,026 3,032 3,029 9,6260 0,198 0,204 0,201 13,9354

10 3,098 3,108 3,102 9,8347 3,318 3,307 3,311 10,4018 0,044 0,039 0,041 27,6633
11 5,981 5,972 5,982 15,5316 2,648 2,654 2,652 8,4693 0,179 0,172 0,175 15,1215
12 6,256 6,259 6,266 15,9319 2,826 2,818 2,822 9,0111 0,221 0,227 0,223 13,0074
13 3,411 3,398 3,405 10,6415 2,898 2,896 2,902 9,2440 0,045 0,048 0,041 26,9825
14 3,081 3,075 3,085 9,7719 2,886 2,892 2,888 9,2140 0,176 0,172 0,179 15,1051
15 9,076 9,069 9,081 19,1572 3,002 2,992 2,988 9,5251 0,214 0,209 0,212 13,4865
16 2,805 2,803 2,798 8,9493 3,308 3,298 3,302 10,3773 0,081 0,074 0,072 22,4106
17 6,707 6,698 6,704 16,5254 2,762 2,766 2,758 8,8245 0,122 0,116 0,124 18,3648
18 6,031 6,022 6,026 15,6011 2,752 2,748 2,754 8,7909 0,258 0,262 0,254 11,7669

EDM operations heavily depend on MRR as the essential performance metric to measure material 
removal rate during specific periods. Each MRR measurement set contains three readings (MRR1, MRR2, 
MRR3), allowing S/N ratio calculation via their average value. The tests performed in Trial 15 (9.076 
mm³/min) and Trial 9 (8.995 mm³/min) achieved peak MRR values, as their respective S/N ratios reached 
19.1572 dB and 19.0883 dB. The results indicate that these particular machining parameters deliver high 
efficiency in material removal. Trial 1, along with Trial 16, exhibited the lowest MRR rates (2.096 mm³/min 
and 2.805 mm³/min, respectively), accompanied by S/N ratios that reached 6.3917 dB and 8.9493 dB. The 
obtained values indicate reduced performance in material removal tasks. The various results of MRR across 
trials point toward particular machining variables that directly affect the amount of material removed.

From the experimental value of SR, it is evident that the finest surface finish (lowest roughness and 
highest S/N ratio) was obtained for Trial 1 (S/N ratio: −7.0101 dB), which produced the smoothest surface 
with roughness values of SR1 = 2.238 µm, SR2 = 2.244 µm, SR3 = 2.242 µm. This indicates that the 
optimized EDM parameters in this trial resulted in minimal surface defects and better surface integrity. 
The poorest surface finish (highest roughness and lowest S/N ratio) was obtained for Trial 3 (S/N ratio:  
−11.3890 dB), recorded the highest roughness values (SR1 = 3.704 µm, SR2 = 3.716 µm, SR3 = 3.712 
µm), leading to a poor-quality surface. This may be due to high discharge energy, excessive tool wear, or 
increased thermal stress causing deep craters and microcracks. Surface roughness values range from 2.238 
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µm to 3.716 µm, showing significant variation in surface finish across different trials. The S/N ratio varies 
between −7.0101 dB and −11.3890 dB, confirming that process parameters significantly influence surface 
quality. Trials with closely matched SR1, SR2, and SR3 values indicate high repeatability and process 
stability (Trial 11: SR1 = 2.648 µm, SR2 = 2.654 µm, SR3 = 2.652 µm). The utility value for raw data was 
calculated using the equation and is mentioned in the table 5.

The machining life duration, together with operational expenses, depends heavily on TWR. S/N ratios 
for TWR were determined from three repetition readings (TWR1, TWR2, TWR3) in each trial. The tool 
wear recorded was 0.041 mm³/min in Trial 10, which also achieved the highest S/N ratio of 27.6633 
dB, indicating reliable machining performance. Tool life conditions for Trial 6 were found unfavourable 
because it experienced the most wear (0.239 mm³/min) alongside the lowest S/N ratio (12.4555 dB). The 
wide variation of TWR measurements between trials demonstrates that tool wear mainly depends on process 
variables, which include pulse-on time and pulse-off time, alongside current settings.

Multi-objective Optimization of Performance Measures

Taguchi’s approach identifies the optimal levels of input variables to maximize a single response. 
However, these input variable settings may lead to adverse outcomes for other responses. Consequently, 
there is a need to determine an ideal configuration of process variables that provides near-optimal quality 
attributes across multiple criteria. Taguchi’s approach combined with the utility concept was employed to 
determine the optimal levels of process variables for multi-objective optimization.

Optimal configurations of process variables and ideal values for specific performance measures are 
shown in Table 6. Based on the Taguchi optimization, the best set of machining parameters for different 
responses was identified. The maximum MRR was obtained with Trial 15, which had the optimal parameters 
of A5B3C1D2E3, and the predicted optimal value of MRR is 9.767 mm³/min. The highest MRR is achieved 
with a combination of high gap current and moderate pulse-on and pulse-off time, ensuring efficient material 
removal.

T a b l e  6

Optimal settings of process parameters and predicted optimal value of response

Responses Trail No. Optimal set of process Variables Predicted optimal response value

Maximum MRR 15 A5B3C1D2E3 9.767 mm3/min

Minimum SR 1 A1B1C1D1E1 2.2119 µm

Minimum TWR 13 A5B1C2D3E1 0.00404 mm3/min

The minimum SR was obtained with Trial 1, with the optimal parameters of A1B1C1D1E1, and the 
predicted optimal surface roughness value is 2.2119 µm. The lowest roughness is obtained using the lowest 
gap current and the shortest pulse-on time, reducing surface damage and improving finish quality.

The optimum tool wear rate (TWR) of the EDM process is achieved at Trial 13, with the optimal 
parameters of A5B1C2D3E1. The predicted optimal value for the TWR is 0.00404 mm³/min. The lowest tool 
wear is achieved by optimizing the discharge energy and duty cycle, ensuring minimal electrode erosion.

The preference scale is calculated by Equation (11) for MRR (PMRR), Equation (12) for SR (PSR), and 
Equation (13) for TWR (PTWR). When calculating the preference scale, the predicted values of the optimal 
responses are as follows: 9.767 mm³/min for MRR, 2.2119 µm for SR, and 0.00404 mm³/min for TWR. The 
experimental findings indicate that the minimum and maximum MRR range from 2.078 mm³/min to 9.081 
mm³/min, the SR ranges from 2.238 µm to 3.716 µm, and the TWR ranges from 0.039 mm³/min to 0.262 
mm³/min.
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where n is a trial number; R is a repetition number; повторение WMRR, WTWR и WSR are the assumed 
values of weighting coefficients.

Specific values:
n (trial number) = 1, 2, 3, ..., 18;
R (repetition number) = 1, 2, 3… .
The utility values are computed using Expression (14) for 18 experimental conditions and three 

repetitions of MRR, SR, and TWR, as shown in Table 7 for both raw data and S/N ratios. Given that utility is 
a quality characteristic favoring larger values, the S/N ratio is calculated using Expression 3. The data from 
Table 7 are presented as main effect plots for both S/N ratios and raw data.

T a b l e  7

Utility data

Trail No.
Raw data (Utility Values)

S/N ratio (dB)
R1 R2 R3

1 3.913 3.922 3.885 11.8358
2 3.356 3.333 3.406 10.5391
3 2.787 2.786 2.800 8.9149
4 4.226 4.095 4.115 12.3486
5 3.489 3.557 3.517 10.9327
6 3.040 3.068 3.050 9.6936
7 2.945 2.934 2.956 9.3822
8 2.559 2.603 2.558 8.2086
9 4.192 4.158 4.182 12.4184
10 2.742 2.853 2.807 8.9407
11 4.264 4.276 4.271 12.6095
12 3.825 3.823 3.830 11.6546
13 3.681 3.631 3.736 11.3215
14 2.540 2.541 2.527 8.0836
15 4.199 4.234 4.234 12.5103
16 2.137 2.218 2.227 6.8203
17 4.511 4.536 4.506 13.0980
18 3.798 3.792 3.803 11.5906

From the utility data (Table 7), it is clearly stated that the highest S/N ratio is obtained for Trial 17 
(13.0980 dB), which has the best performance with the highest utility values. This suggests an optimal 
combination of EDM parameters, leading to improved overall machining quality. Conversely, in the case 
of the lowest S/N ratio, Trial 16 (6.8203 dB) shows the poorest performance, indicating suboptimal process 
parameters that result in low utility values. The utility values range from 2.137 to 4.536, showing significant 
variation in machining performance across different trials. Higher S/N ratios correlate with higher utility 
values, confirming the robustness of the optimal parameter settings. Some trials exhibit closely matched R1, 



OBRABOTKA METALLOV technology

Vol. 27 No. 2 2025

R2, and R3 values (Trial 11: 4.264, 4.276, 4.271), suggesting high repeatability due to consistent process 
parameters. Trials with higher deviations between R1, R2, and R3 indicate process variability, which could 
be caused by inconsistent spark energy, wire tension, or thermal effects.

Impact of process variables for utility function with S/N data 

The provided main effects plot for S/N ratios visualizes the influence of process parameters on the 
S/N ratio derived from the utility function in an EDM experiment (Fig. 3). For WEC (workpiece electrical 
conductivity), the obtained levels are 3268, 4219, 5515, 5625, 5645, and 5902. The plot shows fluctuations 
in S/N ratios across different wire electrode compositions. The peak S/N ratio is observed around level 4219, 
indicating better performance. Performance decreases at levels 5645 and 5902, suggesting suboptimal wire 
materials for efficient machining.

Fig. 3. Impact of process variables for utility function (UMRR, SR, TWR)  
with S/N data

In the case of gap current (Ig), levels are 8, 12, and 16. The S/N ratio increases steadily with higher 
discharge current. Higher currents (e.g., level 16) improve performance, likely due to faster material 
removal. However, excessively high current could increase surface roughness and tool wear.

Considering gap voltage (Vg), the levels are 40, 55, and 70. The S/N ratio decreases significantly with 
increasing gap voltage. Lower voltages (e.g., 40) result in better S/N ratios, likely due to enhanced spark 
stability and controlled discharge energy.

Ton (pulse on time) was varied in the range from 13 µs to 38 µs (with an intermediate value of 26 µs). 
Analysis of the graph demonstrates a slight increase in the S/N ratio with increasing Ton. Longer pulse-on 
time (Ton = 38 µs) potentially improves the material removal rate while maintaining the required surface 
quality.

Toff (pulse off time) levels are 5, 7, and 9. The S/N ratio decreases with increasing Toff. Lower pulse-off 
times (e.g., 5) improve S/N ratios, likely due to reduced idle time and higher efficiency in spark discharge.

Gap voltage (Vg) has the most significant impact on the S/N ratio, as indicated by the steep slope of its 
main effects line. Gap current (Ig) and pulse on time (Ton) also show notable effects, although their trends are 
less steep compared to Vg. Pulse-off time (Toff) and WEC have comparatively less impact but still contribute 
to performance.

Optimal settings (based on larger S/N ratios) are given in Table 8.
Optimized WEC, gap current (Ig), and gap voltage (Vg) settings are critical for achieving a higher S/N 

ratio, reflecting better overall performance. Improper adjustments in Vg or Toff can significantly degrade 
performance, highlighting the importance of precise control in EDM. 
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Optimal setting parameter for S/N data

Sl.No Parameter Description

1 WEC Level 4219 for optimal machining.

2 Ig
Level 16, as higher current improves material removal and reduces machining 
time.

3 Vg Level 40, as lower gap voltage enhances spark stability.

4 Ton Level 38, indicating that longer pulse-ON times are favorable.

5 Toff Level 5, where shorter pulse-OFF times maximize machining efficiency.

T a b l e  9

ANOVA for utility function (UMRR, SR, TWR) for SN data

Source DoF Seq SS Adj SS Adj MS F-ratio P-values % contribution

Ig 2 3.141 3.141 1.5707 3.94 0.051 5.344

Vg 2 49.435 49.435 24.7174 61.96 0.000 84.102

Toff 2 1.816 1.816 0.9082 2.28 0.149 3.089

Residual error 11 4.388 4.388 0.3989 – – 7.465

Total 17 58.780 – – – – 100

S = 0.6316   R-Sq = 92.5%   R-Sq(adj) = 88.5%

Table 9 presents the pooled ANOVA results for the utility function that combines multiple performance 
measures (MRR, TWR, SR) derived from S/N data. The analysis evaluates the contribution and significance 
of process variables on overall performance. Below is a detailed breakdown.

Each process variable (Ig, Vg, and Toff) has two degrees of freedom (DoF), corresponding to the levels 
tested for each parameter. The residual error has eleven degrees of freedom, representing variability 
unexplained by the factors. The total DoF is 17, which is the sum of all DoF.

The sequential sum of squares indicates the contribution of each factor to the total variability in the 
utility function. Vg (49.435) contributes the largest share of variability, indicating it has the most significant 
effect on performance. Ig (3.141) has a moderate impact, while Toff (1.816) has the least contribution among 
the three factors.

Adjusted sum of squares reflects the portion of variability accounted for by each factor after adjusting 
for other factors. The adjusted mean squares is obtained by dividing the adjusted sum of squares (Adj SS) 
by the degrees of freedom (DoF), representing the mean contribution of each factor to variability. The 
F-ratio is the ratio of adjusted mean square (Adj MS) to the mean square of residual error and determines 
the significance of each factor.

P-values test the null hypothesis that a factor has no effect. Significant factors include Vg (P = 0.000), 
which is highly significant (P < 0.05) and strongly influences the utility function. Ig (P = 0.051) is marginally 
significant, showing some influence on performance. Toff (P = 0.149) is not significant (P > 0.05), indicating 
minimal impact.

Gap voltage (Vg) dominates the utility function with an 84.102 % contribution, confirming its critical 
role in determining performance. Ig contributes moderately with 5.344 %, and Toff contributes minimally 
with 3.089 %. Residual error of 7.465% accounts for of unexplained variability.

S (0.6316) is the standard deviation of residuals, representing the goodness-of-fit; lower values indicate 
a better fit. R-Sq (92.5 %) is the proportion of total variability explained by the model, indicating that the 
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model explains most of the data variability. Adjusted R-Sq (88.5 %) accounts for the number of predictors 
in the model; it is slightly lower but still high, indicating a well-fitting model.

Gap voltage (Vg) is the most influential parameter, with an 84.102 % contribution to the utility function. 
Its P-value (0.000) indicates a statistically significant impact at the 95 % confidence level. Optimization of 
gap voltage is critical for improving EDM performance.

Discharge current (Ig) has a moderate influence, contributing 5.344 %. Its P-value (0.051) suggests it is 
marginally significant. Increasing gap current likely improves material removal but may also lead to trade-
offs with surface quality.

Toff has minimal impact on the utility function, with only a 3.089 % contribution. Its P-value (0.149) 
indicates it is not statistically significant. Although the Toff adjustment is less critical, it can still affect 
processing efficiency and time.

The residual error accounts for 7.465 % of variability, which could be due to noise or unaccounted 
factors in the model. The model explains 92.5 % of the variability (R-Sq), with a strong Adjusted R-Sq of 
88.5 %. This indicates that the utility function and process parameters are well represented by the model.

Since gap voltage has the highest contribution and significance, its optimization is critical for improving 
EDM performance. Gap current also impacts performance, though its effect is less dominant. Pulse-off time 
is less critical and may not require extensive optimization.

The utility function for S/N data yielded a response table with measurements from the utility of MRR, 
SR, and TWR. Table 10 demonstrates how the three process parameters – gap current (Ig), gap voltage (Vg), 
and pulse-off time (Toff) – influence the utility function that unites multiple responses (UMRR, TWR, SR) through 
a single performance index.

T a b l e  1 0

Response table with utility function (UMRR, SR, TWR)  
pertaining to SN data

Level Ig Vg Toff

1 10.10 12.47 10.96

2 10.57 10.90 10.65

3 11.13 8.44 10.19

Delta 1.02 4.02 0.77

Rank 2 1 3

Each row shows the computed average utility function based on the specified factor levels. The utility 
performance at different gap current (Ig) levels demonstrates 10.108 at level 1, 10.570 at level 2, and 
reaches 11.130 at level 3. The difference between the maximum and minimum values (Delta) measures 
1.022, reflecting the response variation due to Ig changes. The second rank position indicates that Ig affects 
the utility function with medium strength.

At Vg levels 1 through 3, the average utility values were measured as 12.470, 10.903, and 8.444, 
respectively. The maximum parameter difference (Delta) is 4.026, indicating that Vg is the strongest 
determining parameter, as confirmed by its first rank position — the highest in the analysis.

The utility function reveals Toff as the least influential factor during pulse-off time operations, with val-
ues at levels 1, 2, and 3 equal to 10.969, 10.653, and 10.195, respectively, and a Delta value of 0.774 – the 
lowest among all parameters. Its position at the bottom of the ranking confirms Toff as the least significant 
factor for the utility function.

Overall, the utility function shows that gap voltage (Vg) is the most important factor affecting the com-
bined responses (MRR, TWR, SR). The evaluation with a Delta value of 4.026 validates Vg as the leading 
factor. The second most predominant factor is gap current (Ig), with a Delta value of 1.022. The response 
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is influenced by Toff but to a lesser extent than Vg. The effect of pulse-off time (Toff) remains minimal, with 
a Delta value of 0.774.

According to the ranking, Vg optimization should be the main priority for performance enhancement, 
followed by Ig management, while Toff modifications have minimal effect. Control of voltage stands as the 
critical parameter because it directly influences machining output, especially MRR, alongside SR and TWR 
performance. Voltage delivers the most significant impact on performance levels, followed by current. 
Changes in pulse-off time (Toff) have little impact on overall system operation because its duration plays a 
negligible role.

Impact of process variables for utility function with raw data

The main effects plot for means illustrates the influence of specific process factors on the mean utility 
values obtained from the experimental data. This plot helps determine the optimal levels of each parameter 
to enhance the effectiveness of the EDM process (Fig. 4).

Fig. 4. Impact of process variables for utility function (UMRR, SR, TWR)  
with raw data

Wire composition ECW (Levels: 3268, 4219, 5515, 5625, 5645, 5902): 
The mean utility value fluctuates across different ECW levels. The highest mean is observed at level 

4219, suggesting this wire composition is optimal for better performance. Conversely, the lowest mean at 
level 5515 indicates a suboptimal wire material for machining efficiency.

Gap current (Ig) (Levels: 8, 12, 16): the mean utility value increases steadily as the gap current 
increases. Higher current (16 A) results in better performance, likely due to faster material removal and 
enhanced efficiency. Lower current (8 A) leads to reduced performance, possibly because of insufficient 
spark energy for effective machining.

Gap voltage (Vg) (Levels: 40, 55, 70): the mean utility value decreases significantly with increasing 
gap voltage. The lowest voltage (40 V) produces the highest mean, likely due to improved spark stability 
and reduced arcing. Higher voltages (70 V) degrade performance, possibly owing to unstable discharge 
conditions and poor machining control.

Pulse-on time (Ton) (Levels: 13, 26, 38): the mean utility value slightly increases with longer pulse-on 
times. The highest level (38 µs) may improve material removal efficiency by enabling longer discharge 
duration. Lower levels (13 µs) result in marginally lower performance, potentially due to insufficient 
discharge duration.
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T a b l e  1 1

Optimal setting parameter for raw data

Sl.No Parameter Description

1 WEC Level 4219 (best wire composition)

2 Ig Level 16 (higher discharge current)

3 Vg Level 40 (lower gap voltage)

4 Ton Level 38 (longer pulse-on time)

5 Toff Level 5 (shorter pulse-off time)

Pulse-off time (Toff) (Levels: 5, 7, 9): the mean utility value decreases as pulse-off time increases. Shorter 
pulse-off time (5 µs) maximizes utility, likely due to reduced idle time and increased machining efficiency. 
Longer pulse-off times (9 µs) reduce performance, possibly because of decreased spark frequency.

ECW level 4219 is identified as the most suitable wire composition for achieving optimal performance. 
Gap voltage (Vg) has the most significant influence, with lower levels contributing to better utility values, 
underscoring the need for stable discharge conditions during machining. Gap current (Ig) and pulse-on  
time (Ton) must be optimized to achieve faster material removal and improved efficiency. Shorter pulse-off 
times (Toff) help maintain spark continuity, increasing machining effectiveness.

The optimal parameter settings for raw data are summarized in Table 11.

T a b l e  1 2

ANOVA for utility function (UMRR, SR, TWR) for raw data

Source DoF Seq SS Adj SS Adj MS F-ratio P-values % 
contribution

Ig 2 0.4007 0.4007 0.20037 3.94 0.051 4.767

Vg 2 7.2282 7.2282 3.61411 71.05 0.000 85.984

Toff 2 0.2179 0.2179 0.10894 2.14 0.164 2.593

Residual 
error 11 0.5595 0.5595 0.05087 – – 6.656

Total 17 8.4064 – – – – 100

S = 0.2255   R-Sq = 93.3 %   R-Sq(adj) = 89.7 %

Table 12 presents the pooled analysis of variance (ANOVA) for the utility function (U), which integrates 
multiple responses from the EDM experiments, including material removal rate (MRR), surface roughness 
(SR), and tool wear rate (TWR). The independent variables affecting the utility function are gap current (Ig), 
gap voltage (Vg), and pulse-off time (Toff). The table includes the following statistical terms: 

– Degree of freedom (DoF) is the number of independent ways a factor can vary;
– Sequential sum of squares (Seq SS) is the total variation contributed by each factor;
– Adjusted sum of squares (Adj SS) is the sum of squares adjusted for other model terms or interactions;
– Adjusted mean square (Adj MS) is the variance of each factor, calculated as Adj SS divided by DoF;
– F-ratio is the ratio of factor variance to residual variance; higher values indicate stronger influence;
– P-value is the indicates statistical significance; values less than 0.05 denote significant effects;
– Percentage contribution is the proportion of total variation explained by each factor.
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T a b l e  1 3

Response table with Utility Function (UMRR, SR, TWR)  
pertaining to raw data

Level Ig Vg Ton

1 3.27 4.20 3.59

2 3.46 3.52 3.47

3 3.64 2.65 3.32

Delta 0.36 1.54 0.26

Rank 2 1 3

The gap voltage (Vg) has the highest impact, with an F-ratio of 71.05, the highest among all factors. The 
P-value is 0.000 (<0.05), confirming that it is statistically significant, with a contribution of 85.98 %. This 
indicates that Vg is the dominant factor affecting the utility function (U). 

The gap current (Ig) has a moderate effect, with an F-ratio of 3.94, indicating some influence but lower 
than Vg. The P-value is 0.051, slightly above the significance threshold of 0.05, suggesting a marginally 
significant effect with a contribution of 4.76 %. This means that the impact of Ig is much lower than that 
of Vg.

The pulse-off time (Toff) has an insignificant effect, with an F-ratio of 2.14, indicating minimal influence. 
The P-value is 0.164, far above 0.05, confirming that it is statistically insignificant with a contribution of 
only 2.59 %, making it the least influential factor.

The residual error is 6.656 % of the total variation. This error term accounts for unknown or uncontrolled 
factors affecting the utility function. Since the error percentage is low (<10 %), the model is considered 
reliable.

The standard deviation (S) is 0.2255, which is a small value, indicating minimal variability and a good 
fit of the model. The R-Squared (R²) value is 93.3 %, meaning that 93.3 % of the variation in the utility 
function is explained by the model. A substantial R² value indicates a strong relationship among input 
parameters and the response variable.

The adjusted R-squared (R² adj) is 89.7 %, which accounts for the number of predictors. Since it is close 
to R², this indicates that the model does not contain unnecessary terms, further confirming its reliability.

Table 13 demonstrates the effect of process parameters (Ig, Vg, and Ton) on the combined utility function, 
which integrates multiple responses (UMRR, SR, and TWR) into a single index.

The table displays the mean utility function values for each parametric level:
– for gap current (Ig), the utility function increases from 3.279 at level 1 to 3.464 at level 2, and further 

to 3.644 at level 3. The delta value is 0.365, indicating that changes in current have a moderate impact on 
the response outcomes. Although Ig significantly influences the utility function, it is not the primary deter-
mining factor.

– for gap voltage (Vg), the utility function values at levels 1, 2, and 3 are 4.207, 3.523, and 2.658, re-
spectively. The highest delta value of 1.549 corresponds to Vg, making it the most influential parameter  
(Rank 1) affecting the utility function.

– for pulse-on time (Ton), the utility function values are 3.593 at level 1, 3.470 at level 2, and 3.324 at 
level 3. The delta value of 0.269 is the lowest among the parameters, indicating that Ton has the least impact 
on the utility function (Rank 3).

Gap voltage (Vg) is the primary influencing factor on the utility function due to its highest delta value 
(1.549). The variation of Vg creates substantial effects on the combined responses (UMRR, SR, and TWR). The 
utility function shows a medium influence from the gap current parameter (Ig) according to its delta value 
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of 0.365. The least significant factor among these parameters is pulse-on time (Ton), based on its minimum 
delta value of 0.269. The best outcomes regarding MRR, together with surface roughness and tool wear, 
depend heavily on proper optimization of gap voltage (Vg). The selection process for gap current (Ig) needs 
optimization alongside gap voltage because it displays an important influence on performance. The variation 
of pulse-on time (Ton) leads to near-unnoticeable changes in the entire machining performance parameters.

Predicted optimal means

The optimal level of utility (UMRR, SR, TWR) is anticipated at the ideal values of the main factors indicated 
above. The anticipated average of the performance metric may be calculated using equation (15):

	 µ    , , 3 1 1  2MRR TWR SR B C E T 	 (15)

where T  is the overall mean of utility; 3B  is the average value of utility at third level of gap current; 1C  is 

the average value of utility at first level of gap voltage; 1E  is the average value of utility at first level of 
pulse off time.

Specific values:
T  = 3.462;

3B  = 3.644;

1C  = 4.207;

1E  = 3.593;
µ , ,MRR TWR SR = 4.52.

The 95  % confidence intervals for confirmation experiments (CICE) and the population (CIpop) are 
computed using equations (9) and (10), with the results presented as follows:

CICE = ± 0.3376    and    CIpop = ± 0.1787
The estimated confidence interval for validation experiments is:

µ µµ   
, , , ,, ,  

MRR TWR SR MRR TWR SRCE MRR TWR SR CEMean CI Mean CI

µ , ,4.1824  4.8575MRR TWR SR

The 95 % confidence interval for the population is:

µ µµ   
, , , ,, ,  

MRR TWR SR MRR TWR SRpop MRR TWR SR popMean CI Mean CI

µ , ,4.3413  4.6987MRR TWR SR

The confidence interval for confirmation experiments (CICE) defines the expected range of outcomes 
during the confirmation procedure. According to the experimental data, the true mean of the confirmation 
experiment results will lie between 4.1824 and 4.8576 with 95 % confidence. A broader interval width 
indicates higher variability and uncertainty in the experimental data.

The confidence interval for the population (CIpop) predicts the natural variation present in the entire 
population across all possible observations. The narrower range of CIpop indicates greater precision and 
less variability in the population data. Based on this confidence level, the measurement for the overall 
population should fall between 4.3413 and 4.6987.

The confidence interval for the confirmation experiments (CICE) is wider than that calculated for 
the population (CIpop) because confirmation experiments rely on a smaller sample size, which increases 
measurement variability. Conversely, the larger dataset used to calculate CIpop results in lower uncertainty.
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Importantly, the true population mean (CIpop) lies completely within the confirmation experiment range 
(CICE). A narrow population confidence interval combined with consistent experimental data is an excellent 
indicator that the data are both reliable and consistent with expected trends.

Precision increases as confidence interval widths decrease. The width of CIpop directly correlates with 
the accuracy and certainty of the estimates. Confirmation experiment intervals tend to be wider than those 
of regular tests because they incorporate variability inherent in experimental results, while the narrower 
population interval offers better reliability in estimating the true mean due to its stability.

Wide confidence intervals indicate a high level of data variability, suggesting the need for improved 
optimization of experimental control parameters. The significant overlap between the two confidence 
intervals indicates that the experimental results statistically agree with the predicted values.

Confirmation experiments

The final step is to verify the achieved optimal levels of process variables by conducting experiments 
using these optimal values. The experiments were performed three times, and the average values were 
calculated. The average material removal rate (MRR) achieved was 8.852 mm³/min, the average surface 
roughness (SR) obtained was 2.818 µm, and the average tool wear rate (TWR) was 0.148 mm³/min.

The following expression (equation 16) was used to compute the utility value:

	 U                           MRR MRR SR SR TWR TWRP W P W P W ;	 (16)

U      8.4434 0.33 4.7987 0.33 1.2352 0.3                3 4.      7775.

The empirically derived utility value 4.7775 lies within the 95 % confidence interval of the utility range 
estimated for the utility function (UMRR, SR, TWR).

The determined MRR results from three experimental runs exhibit strong consistency, which confirms 
the stability of the selected process parameters (Table 14). The increased MRR measurement shows that the 
machining method succeeds at material removal while maintaining stable control of additional performance 
characteristics. MRR measurements between experimental runs show slight variations due to sparks energy 
variations and changes in material intrinsic properties. The measured surface roughness falls within a re-
stricted range that represents outstanding process stability.

T a b l e  1 4

Findings of confirmation experiments using optimal values of process variables

Response parameters Optimal values of 
process variables

Obtained experimental value
Average value

R1 R2 R3
MRR (mm3/min)

A2 B3 C1 D3 E1

8.825 8.898 8.832 8.852
SR (µm) 2.812 2.829 2.813 2.818

TWR (mm3/min) 0.143 0.154 0.147 0.148

The surface quality improves when the assessment value of SR decreases towards 2.8 µm, as this 
benefits precise components that need minimal manufacturing post-treatment. The selected parameters yield 
effective optimization of surface quality because run-to-run variations remain low. The production benefits 
from low TWR when electrode life extends and the cost of machining declines. The process stability is 
confirmed by the average TWR value of 0.148 mm³/min, as this indicates that the machining tools remain 
functional for extended period before electrode replacement is required. Small differences in TWR result 
from irregularities in electrical discharge power and workpiece material composition distribution.

Confirmation tests proved that the optimal manufacturing parameters generated from the multi-objective 
approach deliver expected results. The obtained experimental results matched well with the predicted values, 
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which proved the optimization method’s reliability. The combination of high MRR and low SR and TWR 
shows that this EDM enables efficient high-quality machining suitable for use in automotive and aerospace 
components with demanding performance requirements.

Conclusions

The research offers a thorough assessment of the impact of process parameters on the utility function 
that combines MRR, SR, and TWR in EDM.

The experiments conducted in Trials 15 and 9 yielded MRR rates of 9.076 mm³/min and 8.995 mm³/min, 
together with S/N ratios measuring 19.1572 dB and 19.0883 dB, respectively. The machining parameters 
used in Trial 1 along with Trial 16 yielded the lowest MRR values of 2.096 mm³/min and 2.805 mm³/min, 
indicating insufficient material removal. The surface finish in Trial 1 achieved ideal effect due to its lowest 
roughness values (SR1 = 2.238 µm, SR2 = 2.244 µm, SR3 = 2.242 µm) and the highest S/N ratio (−7.0101 
dB). Trial 3 demonstrated poor surface quality with high roughness values (SR1 = 3.704 µm, SR2 = 3.716 
µm, and SR3 = 3.712 µm) due to excessive tool wear and the highest discharge energy, and also showed 
a low S/N ratio of −11.3890 dB. Trial 10 showed the best performance due to the minimum TWR of 0.041 
mm³/min along with the best S/N ratio of 27.6633 dB.

The Taguchi-based optimization method has proven to be effective in finding the optimal machining 
conditions that provide the highest MRR performance along with the lowest SR and TWR results. ANOVA 
statistics confirm that pulse-on time, pulse-off time, and current play an important role in influencing the 
performance results during machining operations. The method shows the importance of precise control of 
EDM parameters to achieve the best machining results.

Each particular response (MRR, SR, and TWR) required individual optimal values for the machining 
parameters from the research findings. When dealing with multiple optimization objectives, utility theory 
helped develop a satisfactory compromise that provides uniform performance in each response area. The 
higher current level increases the material removal rate, but also results in a slight increase in surface 
roughness and tool wear. The main determinant of machining performance accounted for 84.102 % of the 
total utility function. The quality of the machining process performance improves when using lower voltage 
gaps, as this creates more reliable sparks. The surface quality remains high, as both material removal and 
pulse-on time increase together. The performance results are primarily determined by the pulse-off time, as 
this parameter contributes only 3.089 % to the overall score. The quality of the performance and the S/N 
ratio are best improved when the level is set to 4219.

The results show that the gap voltage (Vg) is the main influencing factor followed by the discharge current 
(Ig), while the pulse-off time (Toff) has no significant effect. A total of 92.5 % of the data variability (R²) can 
be explained by the model, proving its high reliability in predicting the optimal machining scenarios. Trial 
number 17 achieved the optimal S/N ratio of 13.098 dB, which resulted in the best experimental results, 
thus becoming the optimal parameter setting among all the tested trials. In contrast, trial number 16 had 
the poorest experimental performance. The better machining quality exists as a direct consequence of the 
increased S/N ratios, demonstrating the success of the optimization strategy.

Optimizing the gap voltage is essential to achieving optimal EDM performance results. Increasing 
the discharge current accelerates material removal, but users need to manage it to prevent excessive tool 
degradation. The pulse-off time has little effect on operational efficiency, although shorter intervals improve 
performance. The utility approach applies various performance metrics to determine the optimal machining 
process that provides the highest efficiency and quality results. The gap voltage (Vg) process parameter 
showed the greatest impact on the utility function, as its delta values reached 4.026 for the S/N data, while 
reaching 1.549 for the raw data.

The ANOVA analysis yielded a P-value of 0.000, which was statistically significant, and the contribution 
rate to the results was 85.98 %. The impact of the gap current (Ig) on the utility function was moderate based 
on its delta values of 1.022 (S/N data) and 0.365 (raw data), resulting in a contribution of 4.76% according 
to ANOVA. The pulse-off time (Toff) was found to have the least impact on the utility function performance 
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as its delta values were the lowest at either 0.774 for S/N data or 0.269 for raw data. The ANOVA analysis 
confirmed that the contribution of the pulse-off time to the utility function performance was minimal (2.59 
%), while its P-value (0.164) was high, proving statistically insignificant. The study found that ECW level 
4219 in combination with Ig level 16, Ton level 38, Vg level 40 and Toff level 5 resulted in maximum MRR, 
SR and TWR results. Decreasing Vg and Toff values improved spark stability as well as machining efficiency, 
but increasing Ig and Ton rates resulted in improved material removal. High correlation existed between 
the input parameters and the utility function as shown by R² = 93.3 % and adjusted R² = 89.7 % in the 
statistical model. The model successfully predicts the response parameters as its residual error remains 
low at 6.656 %. Verification tests confirmed the most suitable process conditions resulting in an average 
MRR rate of 8.852 mm³/min along with SR values of 2.818 µm and TWR readings of 0.148 mm³/min. The 
experimental results fell within the specified 95 % confidence interval, confirming the robust and stable 
nature of the optimized processing parameters. The optimized process achieves excellent MRR levels along 
with minimal SR and TWR, making it suitable for precision manufacturing operations.
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