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A B S T R A C T

Introduction. Milling stainless steel with a ball-end tool is a complex technological process that requires 
precise control of processing parameters to ensure high surface quality. In this regard, it is an urgent task to develop 
methods for predicting roughness parameters, such as Rz. The aim of this work is to develop a predictive neural 
network model that can estimate surface roughness when milling stainless steel using a ball-end tool. Method and 
methodology. The main focus is on error backpropagation and gradient descent methods, as well as hyperparameter 
tuning, which are necessary to prevent overfitting and underfitting of the model. Experimental studies include the 
analysis of both controlled variables, such as feed per tooth, angle of inclination and diameter of the tool, and 
uncontrolled, including coolant supply and tool wear. Results and discussions. The use of coolant for milling 
austenitic steel has reduced the roughness parameters Rz by an average of 14%. A strong negative correlation has 
been established between the dimensional wear of the tool and the parameter Rz (−0.95). At the same time, wear in 
the range of 2…4 μm affects an increase in the Rz parameter by 21% compared to the minimum values. The data 
obtained were used to train eight configurations of artificial neural networks, which were used to predict roughness 
using the Rz parameter. The results show that the 3-16-16-1 network configuration showed the lowest MSE 
(0.0313), followed by 3-20-14-1 (0.0470) and 3-64-64-1 (0.0481), respectively. In addition, these configurations 
also demonstrated the lowest average absolute error values, which demonstrate the average of the absolute 
differences between predicted and observed values (0.1014; 0.1251 and 0.1155, respectively), and the coefficient 
of determination, which is a statistical measure indicating the proportion of data variability explained by the model 
(0.9944; 0.9916; 0.9904). A comparison of the experimental data with the predictions of various models allowed us 
to determine the average value of the absolute differences for the models according to the parameter Ra ≈ 0.074. The 
study suggests approaches to training neural network models for accurate prediction of roughness parameters, which 
makes a significant contribution to the methods of modeling machining processes.

For citation: Gimadeev M.R., Stelmakov V.A., Nikitenko A.V., Uliskov M.V. Prediction of surface roughness in milling with a ball end tool 
using an artificial neural network. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 
2025, vol. 27, no. 2, pp. 126–141. DOI: 10.17212/1994-6309-2025-27.2-126-141. (In Russian).

______
* Corresponding author
Gimadeev Mikhail R., Ph.D. (Engineering), Associate Professor
Pacific National University,
136 Tihookeanskaya st., 
680035, Khabarovsk, Russian Federation
Tel.: +7 924 216-31-39, e-mail: 009063@togudv.ru

Introduction

The quality of the machined surface plays a decisive role in ensuring the operational properties of 
machine parts [1]. Surface roughness (Rz and Ra) often serves as one of the main metrics for assessing the 
surface condition in the machining process [2]. Modeling methods for predicting Rz can be divided into 
three categories: experimental models, analytical models, and artificial intelligence (AI)-based models [3, 
4]. In recent years, AI-driven models have become widely used among researchers to predict characteristics 
related to machining processes [5], and the use of artificial neural networks (ANN) is considered by the 
authors to predict surface roughness, tool wear, and other parameters in machining [6].
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To function effectively, neural models use a vast network of simple computing processors known as 
“neurons.” Neural networks are often used to solve complex problems in which the behavior of variables 
is not well known. One of their fundamental characteristics is the ability to learn from examples and apply 
this knowledge in a generalized way, which allows the creation of nonlinear models. This ability makes the 
use of ANN in multicriteria analysis very effective [7, 8].

The configuration of a neural network requires the definition of several important parameters:  
the number of nodes in the input layer, the number of hidden layers, the number of neurons in each  
hidden layer, and the number of neurons in the output layer. The state of neuron k is determined by the 
equation:
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where xi is the output signal calculated by a neuron i; wki is the synaptic weight between i and bk neurons; k 
is a weight associated with a constant, non–zero value known as the neuron’s bias.

To use ANN, it is necessary to calculate synaptic weights and biases. The process of determining these 
parameters is called training and occurs iteratively, where the initial parameters are updated until the process 
reaches sufficient convergence.

The activation function f describes how the internal input and the current activation state influence the 
determination of the next state of the block. The most commonly used types of activation functions can be 
identified as follows:
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A unit step function, or threshold function, is a mathematical function that takes the value 1 if its 
argument is greater than or equal to some threshold, and 0 otherwise.

Piecewise linear function, an example of which can be represented as:
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where a, c, d, e, g are constants.
A piecewise linear function consists of several linear sections, each defined on its own interval. The 

linear sections are connected to form a continuous function, although the derivative of such a function may 
be discontinuous at the junctions between sections.

Sigmoidal function:
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where a is the slope parameter of the sigmoidal function.
This function is the most commonly used and is characterized as an increasing function that balances 

linear and nonlinear behavior while maintaining its value within the range from 0 to 1.
The choice of activation function can significantly impact network performance. The rectified linear 

unit (ReLU), defined as ReLU(X) = max{X, 0}, is currently the most widely used activation function and is 
popular in neural networks due to its non-saturation and non-linearity [9]. Compared to activation functions 
that exhibit saturation, such as the sigmoidal function, ReLU combined with gradient descent has superior 
performance. Gradient descent is a method used to minimize the loss function by adjusting the weights. 
In neural network training, the objective function is the output error of the network. The minima of the 
function form troughs, and the maxima form hills [10, 11].
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Multilayer perceptrons (MLP) are recognized as the most widely used ANN models. A MLP consists 
of several layers: an input layer that receives raw data; one or more hidden layers that process the data by 
applying weights and activation functions; and an output layer that produces the final output or prediction 
based on the processed data. Neurons in each layer are connected only to neurons in the next layer, with 
no feedback or connections between neurons within the same layer. Additionally, a typical feature of MLP 
is the full connectivity between layers. An example of a network structure consisting of four layers: input 
layer, two hidden layers, and output layer, is shown in Fig. 1.

Fig. 1. Neural network structure for predicting the roughness parameter Rz

In this structure (Fig. 1), the input layer has 8 nodes, each hidden layer has 8 nodes, and the output layer 
has 1 node. The nodes in the input layer represent the following factors: feed per tooth (fz, mm/tooth), angle 
of inclination (γ, °), tool diameter (D, mm), cutting speed (V, mm/min), cutting depth (ap, mm), side step 
(ae, mm), coolant supply (W, l/min), and tool wear (r, mm). The node in the output layer represents the 
predicted surface roughness parameter (Rz, μm).

The network shown is fully connected, meaning that each neuron in any layer is connected to all neurons 
in the previous layer. Signal flow through the network is from left to right, layer by layer. Considering a 
multilayer network with j and k nodes in each hidden layer, the example structure shown in Fig. 1 can be 
described by an 8–j–k–1 configuration. In general, the operation of this type of network is described by two 
main phases: forward propagation and back propagation.

The process of training MLP networks using the back propagation (BP) method follows the sequence: 
Forward Propagation → Loss Calculation → Back Propagation → Weight Update. An essential feature of 
MLP networks is the nonlinearity of neuron outputs, achieved by using the activation function.

Successfully building an ANN model based on the Rz response requires multi-factor experimentation 
and tuning. Although many researchers have applied ANN for modeling in various fields such as machine 
learning [12–14], there is still no clear guideline for building a predictive model. This study examines 
elements that can affect model performance and the Rz response using the capabilities of the TensorFlow 
Python library to reduce uncertainty and improve prediction quality.

Four performance indicators (metrics) were selected to evaluate the accuracy of models for predicting 
surface roughness [15]. These metrics include the coefficient of determination (R²), mean absolute error 
(MAE), mean squared error (MSE), and root mean squared error (RMSE). The coefficient of determination 
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(R²) shows what proportion of the variance of the dependent variable is explained by the independent 
variables of the model:
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where n is the number of data; Yi is the observed values; Ŷ is the predicted values; Ȳ is the mean value of Y.
Despite its usefulness, R² has limitations: it does not account for the number of predictors and can be 

biased by outliers. 
MAE is a measure of the absolute error  | |Y Y  between predicted and actual values:
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MAE is less sensitive to large errors than MSE and RMSE because it uses absolute error values.
MSE and RMSE are characterized by the mean square error and its square root, respectively:
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MSE is sensitive to large errors because squared differences increase with large deviations. Since RMSE 
is measured in the same units as the data itself, it is easier to interpret than MSE. However, like MSE, RMSE 
is also sensitive to large errors.

Analysis of these metrics is critical for a comprehensive assessment of predictive performance [15, 16]. 
When comparing these metrics, special attention is paid to MSE, which has the advantage of detecting and 
accounting large errors, making it useful in machine learning tasks where minimizing large deviations is 
important. Additionally, MSE is smooth and differentiable, simplifying gradient computation in optimization 
methods such as gradient descent. Therefore, MSE is often a more suitable choice for accuracy assessment.

Furthermore, the coefficient of determination R², with values close to 1, is considered most favorable.
A preliminary data analysis is also performed before using machine learning models. This includes 

checking for normality and identifying/removing outliers that can significantly affect model accuracy.
Model optimization is an important step for effective solutions. Configuring hyperparameters ensures the 

best performance estimated from validation datasets within the selected algorithm. Hyperparameters play a 
significant role in controlling the learning process and significantly affect predictive accuracy. Proper setting 
of hyperparameters also helps reduce overfitting and underfitting, improving accuracy. Dropout is a method to 
prevent overfitting by randomly excluding neurons during training, preventing coadaptation [14].

The aim of this work is to develop a predictive neural network model for assessing surface roughness 
when milling stainless steel with a ball-end tool.

To achieve this aim, the following tasks were addressed:
– study of predicting surface roughness parameter Rz when milling with a ball-end tool, including 

optimizing ANN architecture, selecting number of layers, and tuning model parameters to improve prediction 
accuracy.

– analysis of the influence of various input parameters, including tool tilt angle, on roughness prediction 
accuracy, and development of an approach to minimize input data without loss of model effectiveness, as 
well as study of model applicability with limited training sets. 

– final testing of the developed model, assessment of accuracy using MSE, RMSE, MAE, and R² metrics, 
and evaluation of effectiveness through comparison of predicted and experimental data.
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Research methodology

Milling operations were performed on a DMG MORI DMU 50 universal milling machine with 9 kW 
power and maximum rotation speed nmax = 8,000 min−1. The workpiece was made of austenitic stainless 
steel AISI 321 with chemical composition,wt. %: C ≤ 0.12; Si ≤ 0.8; Mn ≤ 2.0; P ≤ 0.035; S ≤ 0.02; Ni 9–11; 
Cr 17–19; Ti < 0,8; Fe – bal. The cutting tool was a hard alloy with multilayer (TiN and TiNAl) PVD coating 
and fine-grained base, with diameters of 6, 8, 10, and 12 mm from Sandvik Coromant. During the experi-
ments, measurements of tool radius wear (r, mm) by levels were obtained using a TT140 contact sensor 
from Heidenhain.

Surface roughness after milling was measured using a SURFCOM 1800D profilometer; for this device, 
the error according to the standard is 3 %. Filter – 50 % Gaussian. The parameter of the basic length (step 
cutoff) was chosen to be 0.8 mm (ISO 4288:1996) for all measurements, since the expected range should be 
0.5 < Rz ≤ 10. Tracing was performed three times in the direction of tool feed.

Experimental design included controlled factors: ap, fz, γ, D, V, and uncontrolled factors: W and r. The 
response parameter was surface roughness Rz.

After experiments, ANN models were built using Python with TensorFlow and Keras libraries for neural 
network creation, training, and regularization, NumPy for array operations, and Scikit-learn for data prepro-
cessing. Experimental data were divided into training and test sets that went through a process of standard-
ization and normalization, accounting for 70 % and 30 % of the total number of experiments performed, 
corresponding to 28 training attempts and 12 testing attempts.

The neural network training algorithm used is the back propagation (BP) method. This method calculates 
the gradient of the loss function with respect to the weights of the neural network. During forward propagation, 
the input data passes through the network, generating an output prediction. The error of this prediction is then 
calculated and propagated back through the network, from the output layer through all hidden layers to the 
input layer. At each layer, the gradient of the error with respect to the weights is calculated.

Hyperparameter values were tested and best values for the models are presented in Table 1.
The optimizer (Adam) updates weights according to computed gradients. These steps are repeated for 

each training epoch, allowing iterative improvement of predictions.

Results and discussion

One of the most important distributions in statistics is the normal distribution, which describes typical 
behavior of many phenomena. To determine the distribution of Rz, measured data after mechanical 
processing of 512 surfaces with coolant were analyzed. For all surfaces, technological parameters were  
ap = 0.2 mm, ae = 0.4 mm. Roughness results (Rz) are shown in Fig. 2.

T a b l e  1

Hyperparameters for the BPNN model

Model Hyperparameters Indicator

Sequential

Activation hidden layers Leaky ReLU
Kernel_regularizer l1=0,0001, l2=0,0001

Dropout 0.01
Optmizer Adam

Learning_rate 0.001
Loss mean_squared_error

Metrics MSE, RMSE, MAE
Batch size 16

Epochs 500
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Pearson goodness-of-fit test showed no basis for rejecting the hypothesis of normal distribution when 
conditions f > 100 and p > 0.05 are met. The sample Rz data deviate from the mathematical expectation of 
5.357 μm by 0.389 μm on average. The data follow a normal distribution according to the 2σ rule with a 
probability of 0.9873.

For neural network modeling, outliers were removed because they can distort results and reduce model 
ability to identify data patterns effectively [17]. For further experiments, depth and lateral pitch were kept 
constant at ap = 0.2 mm and ae = 0.4 mm [18], reducing the number of variable input parameters to three.

Variable W is often considered stochastic and uncontrollable, introducing unexplained variance inde-
pendent of explanatory variables and the model. Typically, W and r are treated as integral components of 
variability; their influence on Rz was considered fz = 0.4 mm/tooth, γ = 50°, D = 6 mm, z = 2. Results are 
shown in Fig. 3.

Rational use of coolant is an important factor in increasing metal processing productivity. When using 
coolant, the roughness parameter Rz decreased by an average of 14 %.

The dissipation rate depends significantly on cutting speed Vc (m/min) and material removal volume Q 
(cm³/min):

,
1000
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The effect of coolant depends on rational choice of cutting conditions, tool wear, and tool/workpiece 
materials [19]. Coolant use and cutting speed of at least 75 m/min are necessary to achieve minimum 
roughness Rz, beyond which W has little impact on model performance.

Surface roughness also depends on tool wear degree [20], with a strong negative correlation R = −0.95. 
As the number of machined workpiece surfaces (i, pcs) increases, dimensional tool wear occurs, typically 
within the range of 2 to 4 μm. This wear leads to an approximate 21 % increase in the Rz parameter relative 
to its minimum observed values.

Fig. 2. Distribution of surface roughness parameter Rz



OBRABOTKA METALLOV

Vol. 23 No. 3 2021

MATERIAL SCIENCE OBRABOTKA METALLOVEQUIPMENT. INSTRUMENTS

Vol. 27 No. 2 2025

Fig. 3. Dependence of surface roughness parameter Rz on cutting speed, coolant and tool wear

An experiment with three factors at two levels each (Table 2) was conducted. Full factorial design  
yields 8 combinations (k = 23 = 8).

Based on theoretical factor influence on roughness, the model considered was: Y(Rz) = a + bfzXfz +  
+ bγXγ + bDXD Here are the calculated natural regression coefficients: a = 3.00; bfz = 2.77; bγ = –0.55;  
bD = –1.08.

The parameters of the regression equation were estimated using the ordinary least squares method. Stan-
dardized β-coefficients: βfz = 0.17; βγ = –3.33; βD = –1.01. 

Comparison of the modules of the values of the standardized regression coefficients β allows us to con-
clude that γ (the angle of inclination of the ball-end tool) is the most influential factor in the formation of 
the roughness parameter Rz. When the fz factor is fixed, the remaining factors show negative standardized 
β coefficients (βγ = –0,54; βD = –1,09), indicating a decrease in the response value Rz. The value R2 = 0.14 
indicates that fz plays an important role in explaining Rz, and fixing it significantly reduces the explanatory 
power of the model.

When γ is fixed, the standardized β coefficients (βfz = 2.77; βD = –1.09) show that fz has a strong posi-
tive contribution and D has a strong negative contribution. The high R2 = 0.84 indicates that even when γ is 
fixed, fz and D remain important in explaining Rz.

When D is fixed, the standardized coefficients βfz = 2.76, βD = –0.54. This means that when D is fixed, 
an increase in fz leads to an increase in Rz, while an increase in γ leads to a decrease. The value R2 = 0.75 
also indicates that the model with fixed D explains the variation in Rz well, and the factors fz and γ remain 
important in explaining Rz.

The regression model (RM), obtained after conducting an experiment on processing free form surface 
with a ball-end tool, characterizing the relationship between the roughness value, feed per tooth, diameter 
and angle of inclination of the tool, expressed by a normalized model has the following form:

Rz(RM) = 3 + 2.77fz – 0.55γ – 1.08D – 0.51fzγ – 1fzD + 0.22γD + 0.2 fzγD.

T a b l e  2

Experimental data values

No. fz γ D fz∙γ fz∙D γ∙D fz∙γ∙D Rz
1 0.5 50 12 1 1 1 1 3.05
2 0.1 50 12 –1 –1 1 –1 0.13
3 0.1 10 12 1 –1 –1 1 0.18
4 0.1 10 6 1 1 1 –1 0.37
5 0.5 10 12 –1 1 –1 –1 4.33
6 0.5 50 6 1 –1 –1 –1 6.38
7 0.1 50 6 –1 1 –1 1 0.26
8 0.5 10 6 –1 –1 1 1 9.32
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In this study, we examine the effect of activation function on the performance of eight neural network 
models in predicting Rz (Fig. 4). 

Loss function reflects model training efficiency. The ReLU activation speeds training but requires 
monitoring of both Train Loss and Validation Loss. Low training loss with high validation loss indicates 

Fig. 4. Learning rates of various configurations
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overfitting, meaning the model memorizes training data instead of generalizing. Fig. 3 shows 3–32–16–1 
and 3–6–6–1 models remembered the training data too well, but cope poorly with new data.

According to results and based on MSE (Table 3), best network configurations are 3–64–64–1  
(MSE = 0.0481), 3–20–14–1 (0.0470), and 3–16–16–1 (0.0313). These also have low RMSE (0.2174, 
0.2135, 0.1770) and MAE (0.1155, 0.1251, 0.1014). RMSE is interpreted as error in the same units as data.

A design with k = 12 experiments was used to test the best models with factors fz ∈ {0.4; 0.5}, γ ∈ {10, 
15, 20, 30, 40, 50}, D ∈ {6}, distributed randomly. 

Table 4 and Fig. 5 present data showing the relationship between the values obtained during the experi-
ment, calculated based on the developed regression model and the predicted BPNN responses.

T a b l e  3

Predictive performance of the neural network

Metrics 3-64-
64-1

3-64-
32-1

3-32-
32-1

3-32-
16-1

3-20-
14-1

3-16-
16-1

3-6-
6-1

3-9-
9-1

MSE 0.0481 0.0621 0.0572 0.0685 0.0470 0.0313 0.0415 0.0603

RMSE 0.2174 0.2492 0.2391 0.2617 0.2135 0.1770 0.2037 0.2456

MAE 0.1155 0.1228 0.1656 0.1361 0.1251 0.1014 0.1306 0.1447

R2 0.9904 0.9889 0.9898 0.9878 0.9916 0.9944 0.9926 0.9862

T a b l e  4

Predicted (Y(Rz)) and experimental (Rz) values for selected configurations, at k = 12

fz γ D Rz Rz(RM)

Y(Rz)

3-64-64-1 3-20-14-1 3-16-16-1

0.4 10

6

6.945 7.090 6.680 6.277 6.491

0.4 50 4.610 4.840 4.938 5.025 5.116

0.4 20 6.108 6.528 6.037 6.469 6.303

0.4 40 5.400 5.403 5.357 5.503 5.261

0.5 20 8.341 8.590 7.923 8.372 7.875

0.4 15 6.614 6.809 6.426 6.495 6.330

0.5 10 9.163 9.330 8.272 8.402 8.925

0.4 30 5.826 5.965 6.067 5.987 6.307

0.5 15 8.786 8.960 8.463 8.590 8.072

0.5 40 6.992 7.110 7.035 6.977 7.407

0.5 30 7.694 7.850 7.792 7.443 7.896

0.5 50 6.024 6.370 6.548 6.745 6.541

MSE 0.049 0.136 0.167 0.175

RMSE 0.221 0.369 0.408 0.418

MAE(Rz) 0.195 0.286 0.317 0.384

MAE(Ra) 0.049 0.072 0.081 0.095

R2 0.973 0.924 0.907 0.903
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Fig. 5. Predicted and Experimental values for selected classifications

When evaluating Table 4 and Fig. 5, one can conclude that the models under consideration showed 
predicted values (Y(Rz)) close to the actual ones (Rz). The coefficient of determination R2 was 0.973 for 
the regression model and 0.924, 0.907, 0.903, respectively, for the considered configurations. For all con-
figurations, MAE ≈ 0.2955 μm means that, on average, model predictions deviate from actual Rz values by 
0.2955 μm.

The Rz parameter correlates strongly with Ra (correlation coefficient 0.91) [21–23]. Statistical process-
ing shows the relationship: Ra = (Rz – 0.391) / 4.022.

Comparison of experimental data with model predictions shows MAE for Ra ≈ 0.049 μm, which is 
negligible in surface roughness context, indicating close agreement between observations and true mean 
values. Thus, errors found do not significantly affect result accuracy, confirming data compliance.

Conclusion

This paper discusses the development of an artificial neural network model to predict surface roughness 
when milling with a ball-end tool. The tuning process of ANN architecture, especially the selection of 
number of layers and neurons, is described to improve prediction accuracy.

The concept of parameter selection based on the significance of the contribution to the accuracy of 
surface roughness prediction Rz is considered to reduce the input factors to the minimum possible. The 
results show that it is possible to obtain accurate predictions of surface roughness even when taking into 
account a small number of input parameters with relatively small training sets.

Selecting the correct network configuration and input parameters is important to ensure accurate 
prediction. In addition, the study highlights the importance of considering the inclination angle of the ball-
end tool (10° to 50°) in training the ANN models, and the increase in the angle affects the decrease in the 
magnitude of the roughness parameters.

The final tests conducted to check the adequacy of the proposed model showed that the model works 
well with reasonable accuracy under the given set of parameters. In conclusion, it can be said that this study 
contributes significantly to machining process modeling by milling.
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