Study of the effect of hafnium and erbium content on the formation of microstructure in aluminium alloy 1590 cast into a copper chill mold

Abstract

Introduction. High-magnesium aluminum alloys are widely used in the automotive, building and aerospace industries due to its low specific gravity and high strength. The characteristics of such alloys can be improved by small additions of scandium and zirconium. However, scandium is very expensive, so in new generation alloys its amount is tended to be reduced. In the recently developed 1590 aluminum alloy, this was achieved by addition of erbium and hafnium. The objective of the paper is to study the effect of erbium and hafnium concentrations on the modification of the cast structure in 1590 aluminum alloy at high solidification rates. Research Methods. The paper investigates the microstructure, chemical composition and size of intermetallic compounds in specimens from ten alloy 1590 modifications with different hafnium and erbium contents cast into a copper chill mold with a solidification rate of 10 °C/sec. The grain structure was studied using an optical microscope. The chemical composition and size of the intermetallic phases were studied using a Tescan Vega 3 scanning electron microscope. Results and discussion. It is established that as the amount of hafnium and erbium increases, the cast structure is modified. In general, grain refinement with the addition of hafnium and erbium can be explained by a higher degree of supercooling between the solid and liquid phases. At a hafnium content of 0.16 %, the dendritic structure begins to transform into an equiaxed grain structure. This transformation can be explained by the appearance of primary intermetallic compounds of the Al3Sc type in the liquid phase. Such intermetallic compounds are identified at a concentration of erbium and hafnium equal to 0.16 %. Moreover, in all alloys eutectic intermetallic compounds are identified that contained manganese and iron and had no effect on the cast structure. Comparison with previously obtained results on the grain size of specimens cast into a steel mold shows that with higher solidification rate, the structure modification in 1590 alloy is getting less efficient. This is explained by an increase in the concentration of transition elements in the solid solution, primarily scandium, necessary for the formation of primary intermetallic particles.

About the authors

A. A. Ragazin

Email: Aleksander.Ragazin@samara-metallurg.ru
ORCID iD: 0000-0002-6762-7436
Samara National Research University named after S.P. Korolev, 34 Moskovskoe Shosse, Samara, 443086, Russian Federation, Aleksander.Ragazin@samara-metallurg.ru

V. Yu. Arishenskii

Email: arysh54@mail.ru
ORCID iD: 0000-0001-6869-4764
D.Sc. (Engineering), Associate Professor, Samara National Research University named after S.P. Korolev, 34 Moskovskoe Shosse, Samara, 443086, Russian Federation, arysh54@mail.ru

S. V. Konovlov

Email: konovalov@sibsiu.ru
ORCID iD: 0000-0003-4809-8660
D.Sc. (Engineering), Professor, 1. Samara National Research University named after S.P. Korolev, 34 Moskovskoe Shosse, Samara, 443086, Russian Federation; 2. Siberian State Industrial University, 42 Kirova str., Novokuznetsk, 654007, Russian Federation, konovalov@sibsiu.ru

E. V. Arishenskii

Email: arishenskiy_ev@sibsiu.ru
ORCID iD: 0000-0003-3875-7749
D.Sc. (Engineering), Associate Professor, 1. Samara National Research University named after S.P. Korolev, 34 Moskovskoe Shosse, Samara, 443086, Russian Federation; 2. Siberian State Industrial University, 42 Kirova str., Novokuznetsk, 654007, Russian Federation, arishenskiy_ev@sibsiu.ru

I. D. Bakhtegareev

Email: bakhtegareev.id@ssau.ru
ORCID iD: 0009-0004-3081-9049
Samara National Research University named after S.P. Korolev, 34 Moskovskoe Shosse, Samara, 443086, Russian Federation, bakhtegareev.id@ssau.ru

References

  1. Алаттар А.Л.А., Бажин В.Ю. Композиционные материалы Al-Cu-B4C для получения высокопрочных заготовок // Металлург. – 2020. – № 6. – С. 65–70.
  2. Grain refinement of casting aluminum alloys of the Al–Mg–Si system by processing the liquid phase using nanosecond electromagnetic pulses / V.B. Deev, E.H. Ri, E.S. Prusov, M.A. Ermakov, A.V. Goncharov // Russian Journal of Non-Ferrous Metals. – 2021. – Vol. 62 (5). – P. 522–530. – doi: 10.3103/S1067821221050023.
  3. Novel high-strength casting Al−Zn−Mg−Ca−Fe aluminum alloy without heat treatment / P.K. Shurkin, N.A. Belov, A.F. Musin, A.A. Aksenov // Russian Journal of Non-Ferrous Metals. – 2020. – Vol. 61 (2). – P. 179–187. – doi: 10.3103/S1067821220020121.
  4. Musfirah A.H., Jaharah A.G. Magnesium and aluminum alloys in automotive industry // Journal of Applied Sciences Research. – 2012. – Vol. 8 (9). – P. 4865–4875.
  5. Benedyk J.C. Aluminum alloys for lightweight automotive structures // Materials, design and manufacturing for lightweight vehicles. – Woodhead Publishing, 2010. – Ch. 3. – P. 79–113. – doi: 10.1533/9781845697822.1.79.
  6. Петров А.П., Головкин П.А. Режимы горячей деформации и технологическая пластичность сплавов систем Al–Mg и Al–Mg–Sc // Перспективные технологии легких и специальных сплавов. – М.: Физматлит, 2006. – С. 213–221. – ISBN 5-9221-0716-Х.
  7. Rana R.S., Purohit R., Das S. Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites // International Journal of Scientific and Research Publications. – 2012. – Vol. 2 (6). – P. 1–7.
  8. Sanders R.E., Baumann S.F., Stumpf H.C. Wrought non-heat treatable aluminum alloys // Treatise in Materials Science & Technology. – Academic Press, 1989. – Vol. 31. – P. 65–105. – doi: 10.1016/B978-0-12-341831-9.50008-5.
  9. Norman A.F., Prangnell P.B., McEwen R.S. The solidification behaviour of dilute aluminium–scandium alloys // Acta Materialia. – 1998. – Vol. 46 (16). – P. 5715–5732. – doi: 10.1016/S1359-6454(98)00257-2.
  10. Zakharov V.V. Effect of scandium on the structure and properties of aluminum alloys // Metal Science and Heat Treatment. – 2003. – Vol. 45 (7–8). – P. 246–253. – doi: 10.1023/A:1027368032062.
  11. Alloying aluminum alloys with scandium and zirconium additives / V.G. Davydov, V.I. Elagin, V.V. Zakharov, D. Rostoval // Metal Science and Heat Treatment. – 1996. – Vol. 38 (8). – P. 347–352. – doi: 10.1007/BF01395323.
  12. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys / Z. Yin, Q. Pan, Y. Zhang, F. Jiang // Materials Science and Engineering: A. – 2000. – Vol. 280 (1). – P. 151–155. – doi: 10.1016/S0921-5093(99)00682-6.
  13. Сплав 1570С – материал для герметичных конструкций перспективных многоразовых изделий РКК «Энергия» / А.В. Бронз, В.И. Ефремов, А.Д. Плотников, А.Г. Чернявский // Космическая техника и технологии. – 2014. – № 4 (7). – С. 62–67.
  14. Автократова Е.В. Перспективный Al-Mg-Sc сплав для самолетостроения // Вестник Уфимского государственного авиационного технического университета. – 2007. – Т. 9, № 1. – С. 182–183.
  15. Влияние режимов термической обработки на механические свойства алюминиевых сплавов 1570, 1580 и 1590 / Е.В. Арышенский, В.Ю. Арышенский, А.М Дриц, Ф.В. Гречников, А.А. Рагазин // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. – 2022. – Т. 21, № 4. – С. 76–87. – doi: 10.18287/2541-7533-2022-21-4-76-87.
  16. Исследование распада пересыщенного твердого раствора в новых высокомагниевых сплавах, экономнолегированных малыми скандиевыми добавками / А.А. Рагазин, Е.В. Арышенский, В.Ю. Арышенский, А.М. Дриц, С.В. Коновалов // Фундаментальные проблемы современного материаловедения. – 2022. – Т. 19, № 4. – С. 491–500. – doi: 10.25712/ASTU.1811-1416.2022.04.008.
  17. Патент № 2726520 С1 Российская Федерация. Свариваемый термически не упрочняемый сплав на основе системы Al-Mg: опубл. 14.07.2020, Бюл. № 20 / Дриц А.М., Арышенский В.Ю., Арышенский Е.В., Захаров В.В.
  18. Телешов В.В. Фундаментальная закономерность изменения структуры при кристаллизации алюминиевых сплавов с разной скоростью охлаждения // Технология легких сплавов. – 2015. – № 2. – С. 13–18.
  19. The formation of Al3(ScxZryHf1−x−y)-dispersoids in aluminium alloys / H. Hallem, W. Lefebvre, B. Forbord, F. Danoix, K. Marthinsen // Materials Science and Engineering: A. – 2006. – Vol. 421 (1–2). – P. 154–160. – doi: 10.1016/j.msea.2005.11.063.
  20. Hallem H., Forbord B., Marthinsen K. Investigation of Al-Fe-Si alloys with additions of Hf, Sc and Zr // Materials Forum. – 2004. – Vol. 28. – P. 825–831.
  21. Исследование влияния гафния и эрбия на микроструктуру литейной заготовки в высокомагниевом алюминиевом сплаве экономнолегированным скандием / В.Ю. Арышенский, Е.В. Арышенский, А.А. Рагазин, И.Д. Бахтегареев, С.В. Коновалов // Металлургия: технологии, инновации, качество «Металлургия-2022»: труды XXIII Международной научно-практической конференции. – Новокузнецк: СибГИУ, 2022. – Ч. 1. – С. 156–161.
  22. Yao W.J., Wang N., Wei B. Containerless rapid solidification of highly undercooled Co-Si eutectic alloys // Materials Science and Engineering: A. – 2003. – Vol. 344 (1–2). – P. 10–19. – doi: 10.1016/S0921-5093(01)01895-0.
  23. Influence of rapid solidification on the microstructure of AZ91HP alloy / J. Cai, G.C. Ma, Z. Liu, H.F. Zhang, Z.Q. Hu // Journal of Alloys and Compounds. – 2006. – Vol. 422 (1–2). – P. 92–96. – doi: 10.1016/j.jallcom.2005.11.054.
  24. The grain refinement mechanism of cast aluminium by zirconium / F. Wang, D. Qiu, Z. Liu, J.A. Taylor, M.A. Easton, M. Zhang // Acta Materialia. – 2013. – Vol. 61 (15). – P. 5636–5645. – doi: 10.1016/j.actamat.2013.05.044.
  25. Grain refinement mechanism of as-cast aluminum by hafnium / H. Li, D. Li, Z. Zhu, B. Chen, X. Chen, Ch. Yang, H. Zhang, W. Kang // Transactions of Nonferrous Metals Society of China. – 2016. – Vol. 26 (12). – P. 3059–3069. – doi: 10.1016/S1003-6326(16)64438-2.
  26. Захаров В.В. Особенности кристаллизации алюминиевых сплавов, легированных скандием // Металловедение и термическая обработка металлов. – 2011. – № 9. – С. 12–18.
  27. Warmuzek M., Ratuszek W., Sek-Sas G. Chemical inhomogeneity of intermetallic phases precipitates formed during solidification of Al-Si alloys // Materials Characterization. – 2005. – Vol. 54 (1). – P. 31–40. – doi: 10.1016/j.matchar.2004.10.001.
  28. Engler O., Kuhnke K., Hasenclever J. Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al-Mg alloys with different Mg contents // Journal of Alloys and Compounds. – 2017. – Vol. 728. – P. 669–681. – doi: 10.1016/j.jallcom.2017.09.060.
  29. Röyset J., Ryum N. Scandium in aluminium alloys // International Materials Reviews. – 2005. – Vol. 50 (1). – P. 19–44. – doi: 10.1179/174328005X14311.
  30. Investigation of the phase relations in the Al-rich alloys of the Al–Sc–Hf system in solid state / L.L. Rokhlin, N.R. Bochvar, J. Boselli, T.V. Dobatkina // Journal of Phase Equilibria and Diffusion. – 2010. – Vol. 31. – P. 327–332. – doi: 10.1007/s11669-010-9710-z.
  31. Белоцерковец В.В. Закономерности получения недендритной структуры в алюминиевых сплавах с цирконием // Технология легких сплавов. – 2013. – № 4. – С. 160–168.
  32. Косов Я.И. Перспективные композиции алюминиевых сплавов и лигатур // Международный научно-исследовательский журнал. – 2016. – № 11-4 (53). – С. 73–77. – doi: 10.18454/IRJ.2016.53.150.
  33. Диаграммы состояния двойных металлических систем. В 3 т. Т. 1 / под общ. ред. Н.П. Лякишева. – М.: Машиностроение, 1996. – 992 с. – ISBN 5-217-02688-X.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».