Прогнозирование технологических трендов с учетом временных интервалов между научными публикациями и патентами
- Авторы: Дайм Т.1, Бухари Э.1, Бакри Д.1, ВанХуис Д.1, Ялсин Х.2, Ванг С.3
-
Учреждения:
- Государственный университет Портленда
- Университет Эге, Erzene Mahallesi Ege Universitesi Merkez Yerleskesi
- Пекинский технологический университет
- Выпуск: Том 15, № 2 (2021): СПЕЦИАЛЬНЫЙ ВЫПУСК «МЕТОДОЛОГИЯ ФОРСАЙТА И ДОРОЖНЫХ КАРТ»
- Страницы: 12-24
- Раздел: Статьи
- URL: https://journal-vniispk.ru/1995-459X/article/view/346928
- DOI: https://doi.org/10.17323/2500-2597.2021.2.12.24
- ID: 346928
Цитировать
Аннотация
Выявление технологических трендов — ключевой фактор конкурентоспособности, позволяющий воспользоваться потенциалом новых разработок еще до их появления. Освоение инструментов прогнозирования позволяет быть на несколько шагов впереди при создании новых продуктов и услуг. В статье представлен метод, комбинирующий интеллектуальный анализ текста (текст-майнинг) с экспертной оценкой для изучения краткосрочных тенденций технологического развития. В качестве примера для апробации выбрана бизнес-модель «программное обеспечение как услуга» (software-as-a-service, SaaS). Долгосрочные тренды выявляются путем анализа временных интервалов между научными исследованиями и прикладными разработками. Новый подход вносит вклад в развитие методологии технологического прогнозирования. Представлены пять основных направлений эволюции рассматриваемой области: виртуальные сети, гибридное облако, методы моделирования, мобильные и веб-приложения, свидетельствующие о переходе информационных систем в онлайн-формат. Наряду с бессрочным лицензированием получает распространение схема пользования программным обеспечением по подписке. Ускоренная разработка продуктов на основе мобильных решений преобразует подходы к хранению информации, прежде всего в базах данных.
Об авторах
Тугрул Дайм
Государственный университет Портленда
Email: ji2td@pdx.edu
1900 SW 4th, Portland OR 97201 USA
Эсраа Бухари
Государственный университет Портленда
Email: ebukhari@pdx.edu
1900 SW 4th, Portland OR 97201 USA
Дана Бакри
Государственный университет Портленда
Email: dbakry@pdx.edu
1900 SW 4th, Portland OR 97201 USA
Джеймс ВанХуис
Государственный университет Портленда
Email: jvanhuis@pdx.edu
1900 SW 4th, Portland OR 97201 USA
Хайдар Ялсин
Университет Эге, Erzene Mahallesi Ege Universitesi Merkez Yerleskesi
Email: haydar.yalcin@gmail.com
35040 Bornova/Izmir, Turkiye
Сяоли Ванг
Пекинский технологический университет
Автор, ответственный за переписку.
Email: bjutwxl@qq.com
NO.100, Pingle Garden,Chaoyang District, Beijing City, China
Список литературы
- Angelou K., Maragakis M., Argyrakis P. (2019) A structural analysis of the patent citation network by the k-shell decomposition method. Physica A: Statistical Mechanics and Its Applications, 521, 476-483. DOI: https://doi.org/10.1016/j.physa.2019.01.063
- Bengisu M., Nekhili R. (2006) Forecasting emerging technologies with the aid of science and technology databases. Technological Forecasting and Social Change, 73(7), 835-844. DOI: https://doi.org/10.1016/j.techfore.2005.09.001
- Bildosola I., Rio-Belver R.M., Garechana G., Cilleruelo E. (2017) TeknoRoadmap: An approach for depicting emerging technologies. Technological Forecasting and Social Change, 117, 25-37. DOI: https://doi.org/10.1016/j.techfore.2017.01.015
- Boyack K.W., van Eck N.J., Colavizza G., Waltman L. (2018) Characterizing in-text citations in scientific articles: A large-scale analysis. Journal of Informetrics, 12(1), 59-73. DOI: https://doi.org/10.1016/j.joi.2017.11.005
- Chen C. (1998) Bridging the gap: The use of pathfinder networks in visual navigation. Journal of Visual Languages & Computing, 9(3), 267-286. DOI: https://doi.org/10.1006/jvlc.1998.0083
- Chen C.M., Ibekwe?SanJuan F., Hou J. H. (2010) The Structure and Dynamics of Cocitation Clusters: A Multiple-Perspective Cocitation Analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386-1409. DOI: https://doi.org/10.1002/asi.21309
- Chen H., Zhang G., Zhu D., Lu J. (2017) Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014. Technological Forecasting and Social Change, 119(7), 39-52. DOI: https://doi.org/10.1016/j.techfore.2017.03.009
- Chen W., Shen B.J., Qi Z.W. (2011) Research and implementation of business logic customization framework for SaaS applications. Jisuanji Yingyong Yanjiu, 28(1), 155-158.
- Choi S., Park H., Kang D., Lee J.Y., Kim K. (2012) An SAO-based text mining approach to building a technology tree for technology planning. Expert Systems with Applications, 39(13), 11443-11455. DOI: https://doi.org/10.1016/j.eswa.2012.04.014
- Christensen C.M. (1997) The innovator's dilemma: When new technologies cause great firms to fail, Boston, MA: Harvard Business School Press.
- Coates V., Farooque M., Klavans R., Lapid K., Linstone H.A., Pistorius C., Porter A.L. (2001) On the Future of Technological Forecasting. Technological Forecasting and Social Change, 67(1), 1-17. DOI: https://doi.org/10.1016/S0040-1625(00)00122-0
- Cusumano M.A. (2008) The changing software business: Moving from products to services. Computer, 41(1), 20-27. https://doi.ieeecomputersociety.org/. DOI: https://doi.org/10.1109/MC.2008.29
- Daim T., Bukhari E., Bakry D., VanHuis J., Yalcin H., Wang X. (2021) Forecasting Technology Trends through the Gap Between Science and Technology: The Case of Software as an E-Commerce Service. Foresight and STI Governance, 15(2), 12-24.
- Elfatatry A., Layzell P. (2002) Software as a service: A negotiation perspective. In: Proceedings of the 26th Annual International Conference on Computer Software and Applications, 26-29 August 2002, Oxford, UK (ed. D.C. Martin), Piscataway, NJ: IEEE, pp. 501-506. https://ieeexplore.ieee.org/document/1045054, accessed 06.04.2021.
- Garcia-Lillo F., Claver-Cortes E., Marco-Lajara B., Ubeda-Garcia M. (2019) Identifying the ‘knowledge base' or ‘intellectual structure' of research on international business, 2000-2015: A citation/co-citation analysis of JIBS. International Business Review, 28(4), 713-726. DOI: https://doi.org/10.1016/j.ibusrev.2019.02.001
- Ghazinoory S., Ameri F., Farnoodi S. (2013) An application of the text mining approach to select technology centers of excellence. Technological Forecasting and Social Change, 80(5), 918-931. DOI: https://doi.org/10.1016/j.techfore.2012.09.001
- Graham R.L., Hell P. (1985) On the history of the minimum spanning tree problem. Annals of the History of Computing, 7(1), 43-57. DOI: https://doi.org/10.1109/MAHC.1985.10011
- Hasner C., de Lima A.A., Winter E. (2019) Technology advances in sugarcane propagation: A patent citation study. World Patent Information, 56, 9-16. DOI: https://doi.org/10.1016/j.wpi.2018.09.001
- Huang L., Zhang Y., Guo Y., Zhu D.H., Porter A.L. (2014) Four-dimensional Science and Technology Planning: A New Approach Based on Bibliometrics and Technology Roadmapping. Technological Forecasting and Social Change, 81(1), 39-48. DOI: https://doi.org/10.1016/j.techfore.2012.09.010
- Huang Y., Porter A.L., Zhang Y., Lian X., Guo Y. (2018) An assessment of technology forecasting: Revisiting earlier analyses on dye-sensitized solar cells (DSSCs). Technological Forecasting and Social Change, 146, 831-843. DOI: https://doi.org/10.1016/j.techfore.2018.10.031
- Kim G., Bae J. (2017) A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change, 117, 228-237. DOI: https://doi.org/10.1016/j.techfore.2016.11.023
- Kim H.J., Jeong Y.K., Song M. (2016) Content- and proximity-based author co-citation analysis using citation sentences. Journal of Informetrics, 10(4), 954-966. DOI: https://doi.org/10.1016/j.joi.2016.07.007
- Kose T., Sakata I. (2018) Identifying technology convergence in the field of robotics research. Technological Forecasting and Social Change. DOI: https://doi.org/10.1016/j.techfore.2018.09.005
- Laplante P.A., Zhang J., Voas J. (2008) What's in a Name? Distinguishing between SaaS and SOA. IT Professional, 10(3), 46-50. https://doi.ieeecomputersociety.org/. DOI: https://doi.org/10.1109/MITP.2008.60
- Lee H., Lee S., Yoon B. (2011) Technology clustering based on evolutionary patterns: The case of information and communications technologies. Technological Forecasting and Social Change, 78(6), 953-967. DOI: https://doi.org/10.1016/j.techfore.2011.02.002
- Li X., Xie Q., Daim T., Huang L. (2019) Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology. Technological Forecasting and Social Change. DOI: https://doi.org/10.1016/j.techfore.2019.01.012
- Ma D. (2007) The business model of Software-as-a-Service. In: Proceedings of the IEEE International Conference on Services Computing (SCC 2007), Salt Lake City, UT, 9-13 July 2007, Hoboken, NJ: IEEE, pp. 701-702. http://doi.ieeecomputersociety.org/. DOI: https://doi.org/10.1109/SCC.2007.118
- Madani F., Weber C. (2016) The evolution of patent mining: Applying bibliometrics analysis and keyword network analysis. World Patent Information, 46, 32-48. DOI: https://doi.org/10.1016/j.wpi.2016.05.008
- Olsson O. (2005) Technological opportunity and growth. Journal of Economic Growth, 10(1), 31-53. DOI: https://doi.org/10.1007/s10887-005-1112-4
- Park C., Yong T. (2017) Prospect of Korean nuclear policy change through text mining. Energy Procedia, 128, 72-78. DOI: https://doi.org/10.1016/j.egypro.2017.09.017
- Porter A.-L., Detampel M.J. (1995) Technology opportunities analysis. Technological Forecasting and Social Change, 49(3), 237-255. DOI: https://doi.org/10.1016/0040-1625(95)00022-3
- Porter A.L., Cunningham S.W. (2004) Tech Mining: Exploiting New Technologies for Competitive Advantage, Hoboken, NJ: Wiley.
- Rezaeian M., Montazeri H., Loonen R.C.G.M. (2017) Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation. Technological Forecasting and Social Change, 118, 270-280. DOI: https://doi.org/10.1016/j.techfore.2017.02.027
- Rongying Z., Limin X. (2010) The Knowledge Map of the Evolution and Research Frontiers of the Bibliometrics. Journal of Library Science in China, 5, 60-68. https://en.cnki.com.cn/Article_en/CJFDTotal-ZGTS201005007.htm, accessed 06.04.2021.
- SIIA (2001) Software as a Serice: Strategic Backgrounder. Washington, D.C.: Software & Information Industry Association.
- Shibata N., Kajikawa Y., Sakata I. (2010) Extracting the commercialization gap between science and technology - Case study of a solar cell. Technological Forecasting and Social Change, 77(7), 1147-1155. DOI: https://doi.org/10.1016/j.techfore.2010.03.008
- Teufel S., Siddharthan A., Tidhar D. (2009) An annotation scheme for citation function. In: SigDIAL '06: Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue (eds. J. Alexandersson, A. Knott), Stroudsburg, PA: Association for Computational Linguistics, pp. 80-87. http://dl.acm.org/citation.cfm?id=1654595.1654612, accessed 06.04.2021.
- Wang M.-Y., Fang S.-C., Chang Y.-H. (2015) Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels. Technological Forecasting and Social Change, 92, 182-195. DOI: https://doi.org/10.1016/j.techfore.2014.07.008
- Yoon B., Park I., Coh B. (2014) Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining. Technological Forecasting and Social Change, 86, 287-303. DOI: https://doi.org/10.1016/j.techfore.2013.10.013
- Yoon B., Park Y. (2005) A systematic approach for identifying technology opportunities: keyword-based morphology analysis. Technological Forecasting and Social Change, 72 (2), 145-160. DOI: https://doi.org/10.1016/j.techfore.2004.08.011
Дополнительные файлы

