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Two-Parametric / Game-Theory Model of a Service Concession in the Communal Heating 
Sector

Abstract
In this study, we propose to model the operation of a service concession arrangement in the economic area of municipal 
heat supply utilities. We offer a scheme of interaction between the concedent and concessionaire in this concessionary 
arrangement. Currently, the existing regulations regarding the temperature of coolant focusses on the daily average 
outdoor temperature, and the determination of a “normative” demand for heat energy. On any day of the heating period, 
this demand is a random variable, whose distribution can be described through the distribution of daily average air 
temperature. 
In our model, heat energy is paid for at a fixed price, and the concessionaire pays a penalty for each unit of unsatisfied 
normative demand. The price and penalty values are the concession parameters, and are determined by the concedent. 
The concedent’s goal is to minimise the thermal energy cost; the concessionaire’s purpose is to maximise profit. The 
interaction is formalised as a two-move game model. First, the concedent determines the price and the value of the 
penalty. Then the concessionaire selects the capacity to be created. The concession’s parameters should be set so that the 
individual rationality and incentive compatibility conditions are met. 
Our results prove the existence of Stackelberg equilibrium, and we derive the relevant formulas for computing its 
parameters. In equilibrium, the optimum capacity for the concessionaire provides a sufficient probability of meeting 
demand. The price of thermal energy is minimal under this condition. We also formulate a one-parameter model 
(thermal energy price as a parameter), which is based on a typical concession scheme. In the two-parameter model, 
the equilibrium capacity and price do not exceed the corresponding parameters of the one-parameter model. The 
main advantage of the two-parameter model is an “embedded” economic mechanism that prevents the concessionaire’s 
opportunistic behaviour. By contrast, in the one-parameter model there is no such mechanism. 
The proposed approach can be applied to a concession for the production of any good or service, provided the concerned 
parties are interested in the availability and reliability of meeting a corresponding need, which may be described as a 
random variable. However, typical concession schemes do not penalise unsatisfied demand, so the implementation of 
our two-parametric model is possible only after modification of the pertinent concession legislation. 

Keywords: concession, heating, game-theoretic model, economic mechanism, Stackelberg equilibrium, opportunistic 
behaviour
JEL classification: C62, G38, L32, L38, Q41



Journal of Corporate Finance Research / Applied Financial Analytics 2020 | Vol. 14 | # 1

Higher School of  Economics57

Introduction
In public-private partnership (PPP) agreements the choice 
of the regulation type (contractual and (or) administrative) 
exerts a strong influence on the probability of the project 
implementation and its efficiency [1; 2]. This is particularly 
so in the case of government service concessions, that is, 
concessionary deals in regulated infrastructure sectors. 
Where the regulation of heat supply is concerned, such 
projects may combine the tariff (or restriction of price), 
requirements to capacity and process characteristics of the 
concession subject, and the investment returns norm, etc. 
The experience of projects focusing on modernising the 
heat supply system in the Novosibirsk Region (implement-
ed in accordance with concession agreements) shows that 
such service concession arrangements can be effective in 
small municipal entities. The project participants noted 
specific risks arising when preparing and implementing 
such projects. Significant risks are related to inconform-
ity in terms of a contrast of budgetary, tax-related, and 
concession-related regulatory documents, with the practice 
of tariff regulation - which does not prompt power-gener-
ating companies to reduce expenses and increase energy 
efficiency [3, p. 54]. To a great extent a project’s success is 
predetermined at the stage of contract preparation when 
the legal and financial obligations of the parties are defined.
In this paper, we will consider a building, operation, and 
transfer (BOT) concession for the development and oper-
ation of heat producing capacity. When entering into such 
a concession, one of the main risks is related to the prob-
ability of the concessionaire’s opportunistic behaviour. 
The concessionaire may (in order to reduce capital costs) 
develop a capacity insufficient for a consistent heat supply. 
Also, if the capacity is sufficient, the concessionaire may 
(in order to reduce current costs) decrease delivery of heat 
energy. We therefore seek to propose an economic mech-
anism which makes opportunistic behaviour disadvanta-
geous for the concessionaire.
Our proposed model features the following assumptions 
and special characteristics:

1) In order to provide for a high quality heat supply, 
the concedent establishes the norms of the coolant’s 
temperature, depending on the daily average outdoor 
temperature. In this way the “normative demand” 
for heat energy is created. This demand is a discrete 
random variable, the distribution for which is easy 
to define, knowing the distribution of average daily 
temperature of outdoor air.

2) The concedent can calculate the minimal power 
z1, which ensures meeting the norm demand at an 
admissible probability. In order to incite creation of 
sufficient power and its use to satisfy the demand – 
that is the incentive compatibility condition – the 
concedent determines the price of heat energy p and 
penalty q for each unit of unsatisfied demand.

3) Customers pay for heat energy. Serving their 
interests, the concedent strives to minimise the price 
of heat energy. However, this price should provide to 

the concessionaire a non-negative operating profit 
(taking into consideration heat losses in the supply 
system) and, for the whole term of the concession, a 
non-negative cumulative net present value (NPV) – 
the individual rationality condition.

4) We formalise the interaction of the parties as a 
two-move game. The concedent (leader according to 
Stackelberg) makes the first move selecting the values 
of parameters p and q. Knowing these parameters, the 
concessionaire makes the second move choosing the 
target capacity z in a way that maximises the revenue.

5) Our proposed model provides for the opportunity 
of the concessionaire’s participation in financing 
of modernisation of the heat-transmitting system, 
related to the concession subject (hereinafter 
referred to as the “transmitting system project”, 
TSP). For this reason, unlike article [13], we do 
not postulate the non-negative characteristic of q. 
If the concessionaire’s expenses for modernisation 
of the heat-transmitting system are significant, 
the parameter of q in equilibrium is negative. 
Additionally, as other characteristic features of 
equilibrium it helps to calculate the concedent’s 
payments which ensure the concessionaire’s 
guaranteed minimum income.

The novelty and main advantage of the offered model 
consists in the fact that an economic mechanism which 
makes the concessionaire’s opportunistic behaviour 
unprofitable for it is “embedded” in the model (there is 
no such mechanism in the typical model of concession). 
With the recommended choice of p and q (price and 
penalty) parameters, the concessionaire will earn the 
maximum profit if it develops exactly the amount of pow-
er preferable for the concedent, and uses it to satisfy the 
normative demand to the maximum extent. The distinc-
tive feature of this model is the fact that the concession-
aire does not maximise some “governmental” benefit, but 
rather minimises the heat energy price. As far as we know, 
such concession models have not been described in the 
previous literature.
The article is presented as follows. Section 2 comprises 
our literature review. In Section 3 we set a problem and 
substantiate the main assumptions. In Section 4, we for-
malise the problem: we describe the concession game-the-
oretic model (a two-parameter model). In Section 5 we 
prove the existence and define the parameters of Stackel-
berg equilibrium. In Section 6, we develop and analyse the 
simplified model, close to the generally accepted conces-
sion schemes (one-parameter model). Section 7 compares 
the abovementioned models, and outlines the advantages 
of the two-parameter model. Finally, the article concludes 
with the presentation of our results and conclusions.

Literature Review
Game theory, and the economic mechanisms theory, 
provide an adequate language for modelling economic 
entities’ interaction while making and fulfilling conces-
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sion agreements. In particular, paper [4] is dedicated to 
the opportunities of applying game theory to public-pri-
vate partnership problems. Papers [5; 6] describe the 
game-theoretic model of choice between delivery of a 
service by a state enterprise (regulated monopoly), con-
cession and procurements in the free market. Papers [7; 8] 
offer models which substantiate the choice of the winner 
in a tender for participation in PPP and a reasonable 
reimbursement to those who fail to win the contract. Pub-
lications have also analysed the following problem: when 
a concessionaire suffers financial difficulties (for example, 
there is a threat of bankruptcy) under which conditions 
it is reasonable (from the concedent’s point of view) to 
provide additional financing of the project, and under 
conditions it is reasonable to renew the agreement (see 
[5; 7]). In paper [9] it is observed that in construction, 
opportunistic bidding often causes financial difficulties 
for the contractor. In such cases, when striving to win the 
contract, the contractor undervalues the estimated cost, 
expecting that in future the customer will be reimbursed 
for the losses (because it needs to complete the project or 
on the basis of a legal action). A standard BOT concession 
contract has little protection from such opportunistic 
behaviour.
Paper [10] describes the model of the closed first-price 
auction for a public contract. A tenderer (agent) is 
interested in an increase of the contract value, while the 
customer (principal) strives to minimise it. An economic 
mechanism which reconciles the interests of the customer 
and the executor was created. Under these parameters, it 
is unprofitable for the agent to undervalue the announced 
expenses (in comparison with the genuine ones) for the 
sake of winning the tender, as in this case the victory will 
result in losses. Taking into consideration some additional 
assumptions, an equation was derived which is satisfied 
by the value of the key parameter of the optimal contract, 
which minimises the expected expenses of the customer. 
The customer (as the leader according to Stackelberg) 
fixes this value of this parameter, thus “switching on” the 
sought economic mechanism.
Papers [11; 12] are dedicated to concessions for natural 
resource utilisation with the assumption that both con-
cedent and concessionaire strive to maximise NPV. Paper 
[11] considers the possibility of the concessionaire’s with-
drawal from a BOT concession as a real option, which 
influences the duration of the contract term. The parties’ 
interests are reconciled as follows: in each single period 
the concedent (leader according to Stackelberg) chooses 
the values of the concession payment, and the concession-
aire chooses the term of the concession. A corresponding 
Stackelberg equilibrium is derived. Paper [12] considers 
manufacturing projects from a certain selection defined 
by the government as the concession subject. The gov-
ernment also makes public the list of infrastructure and 
environmental projects, which support manufacturing 
projects. It is anticipated that infrastructure projects are 
implemented at the expense of the budget and environ-
mental ones – through PPP. On the basis of this infor-

mation an investor chooses the projects to participate in. 
The search for Stackelberg equilibrium is formalised as 
a problem of double level mixed integer linear program-
ming. An approximate solution algorithm was offered. 
The model of concession for the manufacturing of a 
public good is offered in article [13]. The authors presume 
that the good is free of charge for the end-use customers, 
and the demand is described as a random variable with 
the differentiable distribution function. The concedent 
pays for the satisfied demand at the price of p, and the 
concessionaire pays the penalty q for each unit of unsatis-
fied demand. The concessionaire maximises the expected 
NPV during the concession term. The concedent chooses 
p and q in such a way that the optimal capacity for the 
concessionaire (which manufactures the public good) 
provides a sufficient expected level of demand satisfaction. 
With this provision, it minimises the expected discounted 
costs. The existence of Stackelberg equilibrium is therefore 
proven, and its parameters are defined.

Statement of the Problem
Let us assume that the concession subject is heat gen-
erating capacity in the municipal heat supply system. It 
may be a new facility or an operating enterprise. In the 
first case, design and construction are usually assigned to 
the concessionaire. In the second case, the terms of the 
concession may contemplate modernisation (e.g. recon-
struction, expansion) of the enterprise. In any event, the 
concedent is a competent authority (central or municipal).
The concedent is interested in the development and support 
by the concessionaire of a heat generating capacity which 
provides a consistent heat supply to consumers in accord-
ance with norms and at a minimum price. The normative 
demand for heat energy on each day of the heating season 
depends on the average daily temperature on such day and, 
consequently, is a random variable, which distribution may 
be derived out of meteorological statistics and rules of cal-
culation of the normative demand for heat energy.
In the pre-plan period, the concessionaire, at its own 
expense (or with partial budgetary financing) designs and 
expands (e.g. modernises, reconstructs) the enterprise 
capacity up to the chosen level within the planned period 
(term of the concession), and bears corresponding oper-
ational and productive costs. The concessionaire’s costs 
should be reimbursed (in case of normal revenue) by the 
consumers’ payments, the concedent may subsidise these 
payments (for all or some consumers).
The concession agreement may provide for modernisation 
(at the concessionaire’s expense or with partial budgetary 
financing) of the heat-transmitting system related to the 
concession subject. In accordance with the Federal Law of 
17.08.1995 No. 147-FZ Concerning Natural Monopolies 
(art. 4), the market of heat energy transmitting services 
belongs to the natural monopoly sphere. The actual gener-
ation of heat energy, on the other hand, is not a monopoly 
type of activity either legislatively, or ad rem. Managing a 
heat generating enterprise and a heat supply system, the 
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concessionaire would have achieved significant power 
in the market. The possible consequence, however, is an 
increase in the cost of heat energy for the consumers, and 
this contradicts the concedent’s purpose. In light of the 
above, we presume that the heat supply system is not the 
concession subject.
The higher the heat energy losses during transmission, 
the greater should be the generating power able to satisfy 
consistently the normative demand. As this trend devel-
ops, capital costs increase correspondingly. The necessity 
to reimburse for the heat energy losses increases current 
costs as well, and as a result, the cost of heat energy for 
consumers rises, which contradicts the concedent’s pur-
pose. If the metering station is located on the boundary 
of balance sheet attribution of the heat supply system, the 
consumers pay only for the delivered heat energy. In such 
a situation, the generator’s current costs will be propor-
tionate to the generated energy, and therefore implemen-
tation of the TSP is beneficial for the concessionaire as 
well. The concedent, in acting in the interests of consum-
ers, may initiate the development of the TSP. In doing so, 
the concedent may therefore determine a transfer to the 
concession of the generating capacity, where the conces-
sionaire participates in the financing of the TSP.
In order to ensure alignment of interests of the conces-
sion parties, we offer to introduce a penalty which the 
concessionaire has to pay to the concedent for each unit 
of unsatisfied demand for heat energy. That is to say, we 
presume that the concessionaire gets from the consumers 
the payment p ≥ 0 for each unit of satisfied demand, and 
pays to the concedent the penalty q (probably, negative) 
for each unit of unsatisfied demand (payments are made 
at the end of the year). With this provision, the conces-
sionaire chooses the capacity z in order to maximise the 
expected NPV within the planned period.
The concedent chooses the value of the concession pa-
rameters p and q. The concedent’s purpose at the minimal 
price for heat energy p is to ensure sufficient consistency 
of satisfaction of daily demand for heat energy. First, 
the generated capacity should be sufficient to make the 
probability of satisfaction of demand on each day of the 
planned period not less than the specified value. Second, 
at any average daily temperature within the considered 
range, the concessionaire’s operating profit should be pos-
itive in order to eliminate the latter’s motivation to stop 
heat generation (the lower the temperature, the larger the 
losses in heat energy transmission, and so generation may 
become unprofitable). 
Below we will formalise the described situation as a dy-
namic game with perfect information, prove the existence 
of equilibrium in this game, and state the method of its 
calculation.

1 Rules and Standards of Operation of Housing Resources MDK 2-03.2003: approved by order of the State Committee for Construction of the Russian 
Federation of 27.09.2003 No.170). М.: State Unitary Enterprise Centre of Construction Design Products, 2004. 
2 Method of defining the quantity of heat energy and heat carrier medium in water systems of municipal heat supply MDS 41-4.2000: approved by 
order of the State Committee for Construction of the Russian Federation of 06.05.2000 No. 105. М.: State Unitary Enterprise Centre of Construction 
Design Products, 2000.

Formalisation  
of the Problem 

Demand for Heat Energy:  
Satisfied and Unsatisfied
For each local heat supply system, a heat supplier develops 
a ‘Schedule of Qualitative Regulation’ of water temper-
ature in the heating system1. This document indicates 
specified values of the temperature of the supplied and 
returned water in the heating system at the boundary of 
balance sheet attribution of the heat supplier and consum-
ers, depending on the average daily outdoor temperature. 
With knowledge of the temperature of the cold water 
added to the system and the weight of the heat carrier 
medium, one can2 calculate the normative daily demand 
for heat energy at an average daily outdoor temperature t. 
Inasmuch as the average daily temperatures are random 
variables, the daily demand for heat energy each day 
should be considered a discrete random variable with 
known distribution.

Designation and Definitions
τi – average daily temperature at the day i of the heating 
season, a random variable.
t1 > … > tn – values of the average daily temperature t for 
which the ‘Schedule of Qualitative Regulation’ of the con-
sidered heat supply system defines the normative temper-
ature of the heat carrier medium.
dj – normative daily demand for heat energy correspond-
ing to the temperature of tj, d1 < d2 < … < dn.
ηi – normative demand for heat energy on day i of the 
heating season, a discrete random variable. 
t(τ) – the value tj nearest to τ on the right, if τ ≤ t1, other-
wise t(τ) = t1. 
We introduce a discrete random variable ξ i = t(τi) and 
assume that aij = P(ξ i = tj).
λ(τ) ∈ (0, 1) – the share of heat energy losses in the system 
(up to the boundary of balance sheet attribution of the 
heat supplier and consumers) at the ambient temperature 
τ. We suppose that λj = λ(tj) and replace the function λ(τ) 
with the step approximation: λ(τ) = λj, if t(τ) = tj.
c – cost of production of one gigacalorie of heat energy.
z0 and z (Gcal per day) – enterprise capacity before and 
after reconstruction. 
xi(z) – quantity of heat energy generated per one day i of 
the heating season at the capacity of z.
Dk = dk / (1 – λk) – minimal capacity which at the average 
daily temperature τ, ensures the normative demand for 
heat energy dk provided t(τ) = tk.
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Previous definitions have taken into account the possi-
bility that during the heating season the average daily 
temperature will go beyond the range of [tn, t1]: if τ < tn, ξi 
= tn and ηi = dn; if τ > t1, ξi = t1 and ηi = d1. It is clear that ξi 
∈ {t1, …, tn} and ηi ∈ {d1, …, dn}, and also P(ηi = dj) = P(ξi 
= tj) = aij.
When the ambient temperature decreases the normative 
demand and heat losses increase, therefore λk < λk+1 and Dk 
< Dk+1 for all k < n. With respect to z and z0 we assume the 
following natural assumptions: z ≥ z0 ≥ 0 and z ∈ [D1, Dn].
The concessionaire chooses the value of xi(z) on each day 
i of the heating season, maximising the current profit. It is 
clear that 0 ≤ xi(z) ≤ min {z, Dj}, if t(τi) = tj. It is desirable 
that the concessionaire uses to the maximum extent the 
existing capacity to satisfy the demand and this is equiv-
alent to the choice of xi(z) = min{z, Dj}. We will prove 
that the concedent can incite such choice with admissible 
values of parameters p and q.
Theorem 1. Let us assume that t(τi) = tj at the heat 
producing capacity z. in this case the concessionaire will 
choose xi(z) = min{z, Dj} > 0, if   ( p + q)(1 – λj) ≥ c, and 
otherwise xi(z) = 0. 
Proof. Under the hypotheses of the theorem ξ i = tj, λ(τ i) = 
λj and ηi = dj. The concessionaire’s profit at the day i at the 
production value of xi will be written as: π(xi) =  pmin{xi(1 
– λj), dj} – qmax{0, dj – xi(1 – λj)} – cxi. If xi ∈ [Dj, z] 
then xi(1 – λj) ≥ dj, from which π(xi) =  p(1 – λj)Dj – cxi 
and max{π(xi) | xi ∈ [Dj, z]} = [   p(1 – λj) – c]Dj = π(Dj) = 
π(min{z, Dj}). If xi ∈ [0, Dj] then π(xi) =  [(   p + q)(1 – λj) – 
c]xi – qdj. If (   p + q)(1 – λj) < c then max{π(x) | x ∈ [0, Dj], 
x ≤ z} = π(0) = –qdj; if in this case z ≥ Dj, then max{π(xi) 
| xi ∈ [Dj, z]} = [p(1 – λj) – c]Dj < –q(1 – λj)Dj = –qdj; 
consequently, xi(z) = 0. If however (   p + q)(1 – λj) ≥ c, then 
max{π(x) | x ∈ [0, Dj], x ≤ z} = π(min{z, Dj}).   (1)
The hypothesis  (p + q)(1 – λj) ≥ c means that at the av-
erage daily temperature tj the heat energy unit generated 
“for expected demand” will give the consumer 1 – λj of 
energy and the concessionaire will get payment for deliv-
ery and will “save” on the penalty for short-delivery of this 
quantity; wherein the concessionaire’s total benefit should 
be less than the cost of production. Inasmuch as values 
of λj do not diminish as j it is necessary and sufficient to 
ensure the following inequation:
(   p + q)(1 – λn) ≥ c.      (1)
If this hypothesis is not met, the concessionaire is incited 
to decrease the heat energy at low temperatures.
Designations. µi(z) and νi(z) – satisfied and, respectively, 
unsatisfied normative demand for heat energy on the day 
i of the heating season at the capacity of z. 
The value of xi(z) depends on the average daily temper-
ature; the values of µi(z) and νi(z) depend on xi(z) and 
normative demand ηi. Consequently, xi(z), µi(z) and νi(z) 
are random variables. The following lemma indicates their 
expected values.
Lemma 1. If the hypothesis (1) is met and z ∈ [Dk, Dk+1) 
then 
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Proof. Granted that ξi = tj. Then λj = λ(ξi), dj = Dj(1 – λj) = 
ηi, theorem 1 implies that xi(z) = min{z, Dj} = min{z, ηi / [1 
– λ(ξi)]}. Hence µi(z) = min{dj, xi(z)(1 – λj)} = min{dj, z(1 
– λj)} and νi(z) = max{0, dj – µi(z)} = max{0, dj – z(1 – λj)}. 
If ηi = dj ≤ z(1 – λj) then Dj ≤ z, xi(z) = Dj, µi(z) = dj and 
νi(z) = 0. However, if ηi = dj > z(1 – λj) then Dj > z, xi(z) 
= z, µi(z) = z(1 – λj) and νi(z) = dj – z(1 – λj). The lemma 
statement follows from the fact that P(ξi = tj) = aij and 
while z ∈ [Dk, Dk+1) the inequation Dj ≤ z is equivalent to 
j ≤ k.
Lemma 2. In the interval [D1, Dn] functions Exi(z), Eµi(z) 
and Eνi(z) are continuous, whereby Eµi(z) and Exi(z) do 
not decrease, and Eνi(z) does not increase.
Proof. Continuity of functions Exi(z), Eµi(z) and Eνi(z) fol-
lows easily from the formulas of lemma 1. Therein Eµi(x) 
and Exi(z) do not decrease, and Eνi(x) does not increase at 
each interval of [Dk   , Dk+1) and, consequently, at [D1, Dn].

Concessionaire’s Profit
The concessionaire gets payment p from the consumers 
for each unit of satisfied demand and pays to the con-
cedent the penalty q (probably, negative) for each unit of 
unsatisfied demand. Payments are made at the end of the 
year.

Designation and Definition
u = (  p, q) – vector of parameters defined by the con-
cedent.
πi(u, z) = pEµi(z) – cExi(z) – qEνi(z) – expected operating 
profit of the concessionaire for the day i at the capacity of 
z (without operational costs, they will be accounted for in 
the annual profit). 
Let us assume that z ∈ [Dk, Dk+1]. It follows from lemma 
2 that formulas of lemma 1 are valid for z = Dk+1. Using 
lemma 1, we arrive at
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Our immediate goal is to prove the concavity of function 
πi(u, z) in z.
Designation. For r ∈ {1, …, n} suppose 
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Theorem 2. Function πi(u, z) is continuous in z in the 
interval of [D1, Dn] and concave in z within this interval if 
hypothesis (1) is met.
Proof. Continuity of πi(u, z) follows from lemma 2. Let us 
assume that hypothesis (1) is met and z ∈ [Dk, Dk+1]. Then 
πi(u, z) = Li(u, k, z). If r < k then
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λ

λ λ

= +

= +

− = − − − +

+ + − − − − =

∑

∑ ㄹ

 

( )( )
1

1 ( )  0,
k

j ij j
j r

p q c a z Dλ
= +

 = + − − − ≥ ∑

as far as (   p + q)(1 – λj) – c ≥ 0 in (1) and z ≥ Dj when j ≤ k. 
Similarly we prove that ( ) ( ), , , , 0 L u r z L u k z− ≥ when r 
> k .  Consequently, min  r{Li(u, r, z)} = πi(u, z) for z ∈ [D1, 
Dn], and concavity of πi(z) follows from [15, theorem 5.5].   
Designations

Πt (u, z) = ( ),i
i

u zπ∑ – 

expected operating profit of the concessionaire for the 
year t of the planned period at the capacity of z. 

Ex(z) = ( )E i
i

x z∑ , Eµ(z) = ( )E i
i

zµ∑ , 

Eν(z) = ( )E i
i

zν∑ . 

Using the introduced designations and definition πi(u, z), 
we can write that:
Πt (u, z) = pEµ(z) – cEx(z) – qEν(z).     (3)
We get a more detailed representation of Πt (u, z) using 
lemma 1. 
Designations

( )

( )

1
1

2 3
1 1

 = ;  (k) = 1 ;  

(k) = ; (k) = 1 ; 

n

j ij j j
i j k

n k

j j j j
j k j

b a M b

M b M b D

λ

λ

= +

= + =

−

−

∑ ∑

∑ ∑

( )4 5
1 1

 (k)= ; (k) = 1 .
k n

j j j j j
j j k

M b D M b Dλ
= = +

−∑ ∑

When z ∈ [Dk, Dk+1], taking into consideration (2), 
t(u, z) =  z[(  p + q)M1(k) – cM2(k)] + pM3(k) – cM4(k) – 
qM5(k).     (4)

If hypothesis (1) is met, from continuity and concavity of 
πi(u, z) (theorem 2) continuity and concavity of Πt (u, z) in 
z follow in the interval of [D1, Dn].
Designations
K1 – concessionaire’s contribution into TSP.
K2(z) – capital costs necessary to achieve the capacity of z 
≥ z0, K2(z0) = 0. 
C(z) – annual operational costs at the capacity of z ≥ 0 
(including the costs necessary to maintain the capacity). 
T (лет) – duration of the concession term, [0, T] – 
planned period. 

α = ( )
1

1 ,
T

t

t

δ −

=

+∑  where δ – discount rate per annum. 

A(z) = K1 + K2(z) + αC(z) – the concessionaire’s discount-
ed costs for the TSP, generation of the capacity z ≥ z0 and 
its operation within the planned period. 
F(u, z) – expected NPV of the concessionaire for the 
planned period with the concession vector of parameters 
u = (   p, q) and capacity z.
Inasmuch as the value of Πt (u, z) does not depend on t, 

( ) ( ) ( ) ( ) ( ) ( )
1

 ,  , , .  5
T

t t
t

F u z A z u z A z u zα
−

=− + Π = − + Π∑
 

If z ≥ z0   and z ∈ [Dk, Dk+1] then from (4) and (5) we ob-
tain: 
F(u, z) = – A(z) + α [z((  p + q)M1(k) – cM2(k)) + pM3(k) – 
cM4(k) – qM5(k)].     (6)

The Concedent’s Purpose
Let us assume that the concedent fixes the value of σ ∈ 
(0, 1) and tries to define p and q which satisfy the follow-
ing conditions. First, inequality (1) should be satisfied in 
order to eliminate the concessionaire’s impetus to stop 
generating energy at low average daily temperatures. Sec-
ond, the capacity of z chosen by the concessionaire should 
ensure sufficient consistency of heat supply: P(ηi ≤ z) ≥ σ 
for all i.Let us assume that condition (1) is satisfied. Then 
at the capacity of z ∈ [Dk, Dk+1) the normative demand for 
heat energy on the day i of the heating season is satisfied 
with the probability of 
P(ηi = dj ≤ z(1 – λj)) = P(ηi = dj and Dj ≤ z) = P(ξ i = tj 

and j ≤ k) = 
1

.
k

ij
j

a
=
∑  

Designations. k(i) = min{k |  
1

k

i
j

a
=
∑ 析  ≥ σ};  

z1 = maxi{Dk(i)} = Dm. 
On day i the normative demand for heat energy is satis-
fied with the probability not less than σ at the minimal 
capacity of Dk(i), and on any day of the heating season – at 
the minimum capacity of z1. Assume the capacity which 
satisfies the minimal demand does not provide for suffi-
cient consistency of heat supply (D1 < z1), and a decrease 
of the existing capacity is unacceptable (z ≥ z0). At the 
specified conditions the concedent minimises p.
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Game-Theoretic Model
This is a two-move game. First, the concedent (leader 
according to Stackelberg [14, p. 56]) chooses the strategy 
u = (  p, q) ∈ R+ × R (further we will see that with big values 
of K1 the value of q should be negative in order to repay to 
the concessionaire the investments with the contractual 
profitability of δ). Second, knowing u the concessionaire 
selects z ∈ {0} ∪ [z0, Dn]. Choosing z = 0 equals relin-
quishment of concession and choosing z ≥ z0 means a 
consent to enter into the concession, invest the amount of 
K1 in TSP and to develop the capacity of z.
If z < z1 (in particular, when z = 0) the concedent will fail 
to achieve its goal. Assume in this case its gain function 
takes on the of value of –∞. The concedent’s gain function 
(maximised) appears as follows: 
H1(u, z) = –p, if (  p + q)(1 – λn) ≥ c and z ∈ [z1, Dn], other-
wise H1(u, z) = –∞.
The concessionaire’s gain function appears as follows: 
H2(u, z) = F(u, z) when z ∈ [z0, Dn] and H2(u, 0) = 0.
The concessionaire’s strategy is function z(∙): R+ × R → {0} 
∪ [z0, Dn] which indicates the concessionaire’s response to 
any concedent’s strategy u = (   p, q). 
Designation. R(u) = Argmax {H2(u, z) | z ∈ {0} ∪ [z0, Dn]} 
– representation of the concessionaire’s response. 
It is clear that the concessionaire will choose z(u) ∈ R(u). 
As a matter of fact, sets R(u) are not one-element sets but 
strategies z(u) have the property that z(u) ∈ R(u) with all 
u ∈ R+ × R they are equivalent for the concessionaire. On 
this basis, let us assume that the concession parties can 
agree upon implementation of the capacity from the set 
of R(u) which is preferable for the concedent, and let us 
accept the following definition.

Definition. Strategies ( ) ,  u p q= and ( )  z u  of the con-
cedent and concessionaire respectively create equilibrium 
in the considered game if ( )z u  ∈ R(u) for all u ∈ R+ × R 
and

( )( ) ( )( )1 1, max{ ,  | }.H u z u H u z u u += ∈ × 
We call the proposed model a ‘two-parametric’ model, 
because the concedent defines two parameters p and q. 

Analysis of the Two-Parametric Model
Let us phrase the assumptions of the cost functions used 
in the model.
K2(z) – does not decrease and is differentiable in [z0, Dn], 
K2(z0) = 0, K2(z) > 0 when z > z0. 
C(z) – does not decrease, is convex and is differentiable 
within the interval of [0, Dn], C(0) = 0. 
A(z) – does not decrease, is convex and is twice differenti-
able within the interval of [z0, Dn]. 

Concessionaire’s Response
For each concedent’s strategy u the concessionaire obtains 
response R(u) as a set of all solutions of the following 
problem: H2(u, z) → max when z∈{0} ∪ [z0, Dn].

Designations. Z(u) = Argmax{F(u, z) | z ∈ [z0, Dn]}; π*(u) 
= max{F(u, z) | z ∈ [z0, Dn]}.
Lemma 3. Let us assume that u = (  p, q) ∈ R+ × R and con-
dition (1) is met. Then:
(а) function F(u, z) is continuous and concave in z within 
the interval of [z0, Dn]; 
(b) function F(u, z) is differentiable in z within [z0, Dn] 
everywhere, except for the points of Dk, and in these 
points is has one-sided derivatives in z;
(c) in point Dk ∈ (z0, Dn) the derivative of the function on 
the left F(u, z) is not less than the derivative on the right.
Proof. (а) The continuity and concavity of function Πt (u, 
z) in [z0, Dn] follow from theorem 2 and the definition of 
this function. Then, assertion (а) follows from (5) and the 
assumption of characteristics of function A(z). Differenti-
ability of F(u, z) within the interval of (Dk, Dk+1) ∩ [z0, Dn] 
follows from (6). The existence of one-sided derivatives 
in point Dk and the correlation between them follow from 
[15, theorem 23.1 and 24.1]. Assertions (b) and (c) are 
proven. 
It is clear that:
R(u) = Z(u), if π*(u) > 0; R(u) = Z(u) ∪ {0}, if π*(u) = 0; 
R(u) = {0}, if π*(u) < 0.     (7)
In the latter case, the concession cannot take place. 
Designation. For z ∈ [z0, Dn] ∩ [Dk   , Dk+1] and u = (  p, q) 
assume
gk(u, z) = – A’(z) + α[(   p + q)M1(k) – cM2(k)]. 
The value of gk(u, z) is derivative of function F(u, z) in z 
when z ∈ (Dk   , Dk+1), derivative on the left in point Dk+1 
when z = Dk+1 and derivative on the right in point Dk 
when z = Dk (k < n). 
Lemma 4. Let us assume that u ∈ R+ × R and condition (1) 
is met. Then z ∈ Z(u), if and only if one of the following 
conditions is met:
(а) z = z0 and gl (u, z0) ≤ 0, where l is defined by condition 
z0 ∈ [Dl, Dl+1);
(b) z ∈ (z0, Dn] ∩ (Dk, Dk+1) and gk(u, z) = 0; 
(c) z = Dk   ∈ (z0 , Dn), gk–1(u, Dk) ≥ 0 and gk(u, Dk) ≤ 0; 
(d) z = Dn and   gn–1(u, Dn) ≥ 0.
Proof. The concave function f(x) reaches its maximum in 
point x, if and only if 0 ∈ ∂f(x), where ∂f(x) – subdifferen-
tial of function f(x) in point x (see the symmetric asser-
tion for convex function in [15, p. 279]). When u ∈ R+ × R 
the subdifferential ∂F(u, z) equals: [g1(u, z0), +∞), if z = z0 
and z0 ∈ [Dl, Dl+1); {gk(u, z)} when z ∈ (Dk, Dk+1); [gk(u, z), 
gk–1(u, z)] when z = Dk ∈ (z0, Dn); (–∞, gn–1(u, z) when z = 
Dn. Assertion of lemma follows from it.

Concedent’s Problem
Designations. S(u) = R(u) ∩ [z1, Dn],  U = {u = (  p, q) ∈ 
R+ × R | S(u) ≠ ∅, (  p + q)(1 – λn) ≥ c}.
If S(u) = ∅ the concessionaire will choose z < z1. When (   p 
+ q)(1 – λn) < c condition (1) is not met and it is unprofit-
able for the concessionaire to generate heat energy at low 
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temperatures. In both cases, the concedent’s benefit equals 
– ∞. Consequently, U is a set of all strategies acceptable 
for the concedent. In the language of the economic 
mechanisms theory z ∈ R(u) is the condition of individ-
ual rationality while (1) and z ≥ z1 are the conditions of 
incentive compatibility, see [14, p. 57 and further]. If U = 
∅ the concedent’s goal is unattainable. However, if u ∈ U 
then H1(u, z) = – p for any z ∈ S(u). Taking equivalence 
into consideration for the concessionaire of all z ∈ R(u), 
assume that in equilibrium z(u) ∈ S(u) for all u ∈ U. 
Consequently, if the concedent’s goal can be achieved (U 
≠ ∅), then its equilibrium strategy is defined on the basis 
of the following problem:  p → min  under the condition of 
(  p, q) ∈ U.

Equilibrium
Designation. A1(z) = A(z) – K1 = K2(z) + C(z).
Lemma 5. If 0 ≤ z0 ≤ z’ ≤ z, then –K1 ≤ z’A’(z’) – A(z’) ≤ 
zA’(z) – A(z). 
Proof. It is knownI that if function f (x) is convex and dif-
ferentiable in X ⊆ R, then f  ‘ (x) does not decrease in X and 
f (x2) – f (x1) ≥ f  ‘ (x1)(x2 – x1) for any x1, x2 out of X, i.e.

x1 f  ‘ (x1) – f (x1) ≥ x2 f  ‘ (x1) – f (x2).     (8)
Assume z0 ≤ z’ ≤ z. Applying (8) to the convex non-de-
creasing function A1(∙) when x1 = z and x2 = z’, we obtain:  

( )'
1zA z  – A1(z) ≥ ( )'

1'z A z  – A1(z’) ≥ ( )'
1'z A z′  – A1( z ' ). 

Similarly, when x1 = z’ and x2 = z0, taking into considera-
tion that K2(z0) = 0 and ( )'

2 0  K z ≥ 0, we have

( )'
1'z A z′ – A1(z’) ≥ ( )'

0 1 0z A z  – A1(z0) = 
( ) ( )'

0 2 0 0[ ' ]z K z C z+ – [K2(z0) + C(z0)] ≥ z0C’(z0) – C(z0).

By assuming the function C(z) is convex in [0, Dn] and 
C(0) = 0, therefore it follows from (8) when x1 = z0 and x2 
= 0 that z0C’(z0) – C(z0) ≥ 0. Hence 0 ≤ ( )'

1'z A z′  – A1(z’ ) 
≤ ( )'

1zA z  – A1(z). Deducting K1 from both sides of ine-
quation and taking into consideration that ( )'

1A z  = A’ (z), 
we arrive at the desired result.
Designation. Assume ∆k = [z0, Dn] ∩ [Dk, Dk+1].
When k < n each z ∈ ∆k let us compare the system of 
equations
(  p + q)M1(k) = cM2(k) + A’(z) / α ,     (9)
pM3(k) – qM5(k) = cM4(k) + [A(z) – zA’(z)] / α.     (10)

I See: Pshenichny B. N. Convex Analysis and Extremum Problem. М.: Nauka, 1980. Theorem 1.1.

Lemma 6. At any z ∈ ∆k the system of equations (9), (10) has the unique solution:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )2 5 1 4 5 1

1 3 5

[ ]
,     11
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′ ′

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )2 3 1 4 3 1

1 3 5

á
.     12

c M k M k M k M k A z M k zA z A z M k
q

áM k M k M k

′ −   − + +   
 +

′
=



If u = (  p, q) is the system solution, then F(u, z) = 0. If, 
apart from that, condition (1) is met then z ∈ R(u).
Proof. Let us calculate the system determinant (9), (10): 

∆ = –M1(k)[M3(k) + M5(k)] = –M1(k) ( )
1

1
n

j j j
j

D bλ
=

−∑  < 0.

Consequently, the system has a unique solution, which we 
designate as u = (  p, q). Applying Cramer’s rule, we obtain 
formulas (11), (12). 
Using formula (6) it is easy to verify that F(u, z) = 0, if p 
and q satisfy equations (9), (10). Assume p and q meet 
condition (1). Equation (9) is equivalent to gk(u, z) = 0, 
therefore z ∈ R(u) follows from lemma 4 using assertion 
(c) of lemma 3.
Designations. Assume z ∈ ∆k. 
u(z, k) = (  p(z, k), q(z, k)) – solution of the system of equa-
tions (9)–(10).
For k < n assume K0(z, k) = αc[M2(k)M3(k) / M1(k) – 
M4(k)] +A’(z)[z+ M3(k) / M1(k)] – A1(z).
Note that for z = Dk ∈ (z0, Dn) both u(z, k) and u(z, k – 1) 

are defined.
Consequence 1.  Assume z ∈ ∆k. Then: (а) q(z, k) < 0 if 
and only if K1 > K0(z, k); (b) q(z, k) ≥ 0 when K1 = 0; (c) 
p(z, k) ≥ c.
Proof. The denominator of formula (12) is positive. In the 
equation which reflects negativeness of the numerator, 
let us replace A(z) with A1(z) + K1. Solving the obtained 
inequation as regards K1, we are left with assertion (а). 
Values of λj do not decrease in j, therefore 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 3
1 1 1

1 4
1 1 1

1 1

1 .

n k n

j j j j k j
j k j j k

k n k

j j j j j j
j j k j

M k M k b D b b

D b b D b M k M k

λ λ

λ

= + = = +

= = + =

= − ≥ −

≥≥ − =

∑ ∑ ∑

∑ ∑ ∑

 

 

Besides, if K1 = 0 then A(z) = A1(z) and zA’(z) – A(z) ≥ 0 
according to lemma 5, from which K0(z, k) ≥ 0 = K1. Then 
q(z, k) ≥ 0 according to assertion (а). Assertion (b) has 
been proven.
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Let us rewrite (11) as follows:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )5 12 5 1 4

1 5 1 5 1 3 5
.     13

A z M k A z zA z M kM k M k M k M k
p c

M k M k M k M k M k M k M kα

′ ′ + −+  = +
+  + 

Note that M2(k) ≥ M1(k) and M4(k) ≥ M3(k), therefore 
the coefficient when с in the right side of the equation 
is (13) is not less than unity. It means that p(z, k) ≥ c if 
A(z) – zA’(z) ≥ 0. Let us assume that A(z) – zA’(z) = K1 
+ A1(z) – zA’(z) < 0. Then K1 < ( )'

1 zA z  – A1(z) ≤ K0(z, k) 
and q(z, k) ≥ 0 according to assertion (а). The quantity 
of generated heat energy cannot be less than the satisfied 
demand, therefore Eµi(z) ≤ Exi(z) for all i and z (it can be 
easily proved formally, using lemma 1). If p(z, k) ≤ c then 
Πt (u(z, k), z) ≤ 0 in (3) and F(u(z, k), z) < 0 in (5), and this 
contradicts lemma 6. Consequently, p(z, k) ≥ c in all cases 
and assertion (c) has been proven.
Designation
For z ∈ ∆k \ {Dk} assume k(z) = k   
and  h(z) = p(z, k) + q(z, k). 
Let us assume that B = {z ≥ z1 | h(z)(1 – λn) ≥ c}  
and z* is the greatest lower bound of set B.
Lemma 7 
(а) Function h(z) is continuous in the interval of ∆k \ {Dk} 
and does not decrease in [z0, Dn]. 
(b) (z*, Dn] ⊆ B ⊆ [z*, Dn]. 
(c) If u ∈ U and z ∈ S(u) then z ≥ z*. 
Proof. For z ∈ ∆k \ {Dk} we obtain the following out of (9) 
h(z) = cM2(k) / M1(k) + A’(z) / αM1(k).     (14)
Continuity of h(z) in ∆k \ {Dk} follows from (14). Function 
k(z) does not decrease in z and M1(k) does not increase in 
k, therefore M1(k(z)) does not increase in z. According to 
the assumption that A(z) is a convex function, therefore 
A’(z) does not decrease. Consequently, the addend in the 
expression for h(z) does not decrease. The augend does 
not decrease either. In point of fact, 
M2(k – 1) / M1(k – 1) ≤ M2(k) / M1(k) ↔ M2(k – 1)M1(k) ≤ 
M1(k – 1) M2(k) ↔

( ) ( )

( ) ( )

1 1

1 1

1 1 .

1 1 .

n n n n

j j j j j j
j k j k j k j k

n n

j j k j
j k j k

b b b b

b b

λ λ

λ λ

= = + = + =

= + = +

− ≤ −

− ≤ −
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∑ ∑

 

The last inequality holds because λj ≥ λk for j > k. Con-
sequently, h(z) is a nondecreasing function within the 
interval of [z0, Dn] and assertion (а) has been proven. 
By convention k(Dn) = n – 1 and according to (14)
h(Dn) = cM2(n – 1) / M1(n – 1) + A’(Dn) / αM1(n – 1) = с / (1 
– λn)+ A’(Dn) / αbn ≥ с / (1 – λn).
Hence, Dn ∈ B. Then assertion (b) follows from assertion (а). 
Let us assume that u = (  p, q) ∈ U and z ∈ S(u). Then p + 
q ≥ c / (1 – λn). If z ∈ (Dk, Dk+1) then according to lemma 
4 gk(u, z) = 0 follows from z ∈ S(u) ⊆ R(u), and  taking 

into consideration (9) it equals h(z) = p + q. Hence h(z) 
≥ c / (1 – λn) and z ≥ z*. Assume z = Dk. Inasmuch as Dn ≥ 
z* it is sufficient to consider the case of k < n. In this case 
according to lemma 4 it follows out of z ∈ S(u) that gk(u, 
z) ≤ 0. Using (9) we obtain p(z, k) + q(z, k) ≥ p + q ≥ c / (1 
– λn). But p(z, k) + q(z, k) = ( )0lim ,y z h y→ +  therefore 
taking into consideration assertion (а), h(y) ≥ c / (1 – λn) 
for y > z. Then it follows from the definition of z* that z ≥ 
z*. Assertion (c) has been proven.
It follows from lemmas 6 and 7 that the concedent may, by 
choosing u = u(z, k(z)), stimulate generation of any capac-
ity z ∈ B. Assertion (b) of lemma 7 describes set B \ {z*}. 
Exogenous parameters of the model define whether z* 
belongs to set B. Let us show that the concedent’s optimal 
strategy u* = ( p*, q*) makes strategy z*, in particular, opti-
mal for the concessionaire and let us find the values of p* 
and q*. The next lemma shows some properties of point z*.
Lemma 8 
(а) If z* ∈ (Dr, Dr+1), then p(z*, r) + q(z*, r) = c / (1 – λn) and 
z* ∈ B. 
(b) If z* = Dr ∈ B and z* > z1, then p(z*, r – 1) + q(z*, r – 1) 
= c / (1 – λn).
(c) If z* = Dr ∉ B, then 1 < r < n and there exists number γ 
∈ (0, 1] with the property that
(1 – γ)[ p(z*, r – 1) + q(z*, r – 1)] + γ[ p(z*, r) + q(z*, r)] = 
c / (1 – λn).
Proof. According to the choice of z* we have h(z) < 
c / (1 – λn) for z < z*. Assume z* ∈ (Dr, Dr+1). According 
to assertion (b) of lemma 7 h(z) ≥ c / (1 – λn) for z ∈ (z*, 
Dr+1). Then h(z*) = c / (1 – λn) follows from assertion (а) 
of lemma 7. Now assume z* = Dr. By assumption z1 = Dm 
> D1, therefore r > 1. If Dr ∈ B and Dr > z1, then h(z*) ≥ 
c / (1 – λn) and h(z) < c / (1 – λn) for z < z*. Hence, taking 
into consideration assertion (а) of lemma 7 it follows 
that h(z*) = c / (1 – λn). If Dr ∉ B, then r < n, as far as Dn 
∈ B according to assertion (b) of lemma 7. Therein h(z*) 
=  p(z*, r – 1) + q(z*, r – 1) < c / (1 – λn), and it follows from 
(9) and assertion (b) of lemma 7 that  p(z*, r) + q(z*, r) = 

( ) ( )* 0lim [ , , ]z z p z r q z r→ + +  ≥ c / (1 – λn). Consequent-
ly, the equality indicated in assertion (c) holds for some 
number γ, which is easily calculated out of this equality.
Lemma 9. Let us assume that z ∈ ∆k, u = (  p, q) ∈ R+ × R, 
F(u, z) ≥ 0 and gk(u, z) ≥ 0. Then p ≥ p(z, k).
Proof. If it is granted that conditions of lemma are met 
and p < p(z, k). Then q > q(z, k), as far as gk(u, z) ≥ 0 
implies p + q ≥ cM2(k) / M1(k) + A’(z) / αM1(k) = p(z, k) + 
q(z, k) in (9). Hence, using (5) and (3) we obtain F(u, z) – 
F(u(z, k), z) = α[(  p –  p(z, k))∙Eµ(z) – (q – q(z, k))∙Eν(z)] 
< 0.
But F(u(z, k), z) = 0 according to lemma 6, it means that 
F(u, z) < 0, contradiction.
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Lemma 10. (а) Function p(z, k) does not decrease in ∆k. 
(b) If 1 < s < n and for the concedent’s strategy и(Ds, s) 
condition (1) is met then p(Ds, s – 1) ≤ p(Ds, s).
Proof. In accordance with (11), minimisation of p(z, k) by 
∆k is equal to minimisation of function f (z) = A’(z)M5(k) 
+ [A(z) – zA’(z)]M1(k). Let us find f  ‘(z) = A’’(z)[M5(k) – 
zM1(k)]. From convexity A(z) it follows that A’’(z) ≥ 0. If z 
≤ Dk+1 then 

( ) ( ) ( ) ( )5 1
1

1  0.
n

j j j
j k

M k zM k b D zλ
= +

− = − − ≥∑
It means that f  ‘(z) ≥ 0 in ∆k and assertion (а) has been 
proven. 
Let us assume that the set u = и(Ds, s) meets condition (1). 
Then F(u, Ds) = 0 and Ds ∈ R(u) according to lemma 6. 
Hence, gs–1(u, Ds) ≥ 0 according to condition (c) of lemma 
4. It means that when k = s – 1 and p’ = p(Ds, s) conditions 
of lemma 9 and p(Ds, s) ≥ p(Ds, s – 1) are met.
It follows from lemma 10 that function p (z, k(z)) does not 
decrease in the interval of (D1, Dn]. Now let us define the 
concedent’s strategy u* = (  p*, q*), the optimality of which 
will be proven below.
Designations and definition. Assume u* = u(z*, r), if z* ∈ 
(Dr, Dr+1), and u* = u(z*, r – 1), if z* = Dr ∈ B (in particu-
lar, if z* = Dn). However, if z* = Dr ∉ B, then u* = (1 – γ)
u(z*, r – 1) + γu(z*, r), where γ is the number indicated in 
assertion (c) of lemma 8.
Theorem 3. Assume z(∙) is the concessionaire’s strategy 
such that z(u) ∈ R(u) for all u ∈ R+ × R and z(u*) = z*. Then 
z(∙) and the concedent’s strategy u* create equilibrium in 
the considered game. 
Proof. Assume z* ∈ ∆r and u* = (p*, q*). On the basis of (7) 
and lemma 3 we make the conclusion that R(u) ≠ ∅ at all 
u ∈ R+ × R. The definition of u*, taking into consideration 
assertion (c) of consequence 1, guarantees that u* ∈ R+ × R 
and condition (1) is met for u*. If u* = u(z*, r), then z* ∈ 
R(u*) according to lemma 6. However, if u* ≠ u(z*, r), then 
z* = Dr < Dn. In this case it follows from (9) that gr–1(u(z*, 
r – 1), z*) = gr(u(z*, r), z*) = 0, it means that gr(u(z*, r – 1), 
z*) ≤ 0 and gr–1(u(z*, r), z*) ≥ 0 according to assertion (c) 
of lemma 3. Function gk(u, z) with fixed z and k is linear 
in u, therefore gr–1(u*, z*) ≥ 0, gr(u*, z*) ≤ 0 and z* ∈ R(u*) 
according to condition (c) of lemma 4. So, z* ∈ R(u*) in 
all cases, therefore u* ∈ U, and therefore concessionaire’s 
strategies with the properties indicated in the theorem 
exist, and we assume z(∙) is one of them.
If u ∉ U, then H1(u, z(u)) = –∞ < –p* = H1(u*, z*). Let us 
assume that u = (  p, q) ∈ U. Then S(u) ≠ ∅ and (  p + q)
(1 – λn) ≥ c. Let us show that p* ≤ p. Assume z(u) = z ∈ ∆k. 
As long as all strategies from R(u) are equivalent for the 
concessionaire we can think that z ∈ S(u). Then F(u, z) ≥ 0 
in (7) and z ≥ z* according to assertion (c) of lemma 7. At 
the same time if z ∈ [z*, Dr+1], then it follows from z ∈ S(u) 
⊆ R(u) according to lemma 4 that gr(u, z) ≥ 0. Then p ≥ 
p(z, r) ≥ p(z*, r) according to lemmas 9 and 10. 
Granted that z ∈ ∆k for k > r. If z ∈ (Dk, Dk+1] then gk(u, 
z) ≥ 0 according to lemma 4. Using lemmas 9 and 10 we 

obtain p ≥ p(z, k) ≥ p(Dk, k). Therein p(Dk, k) + q(Dk, k) = 
( )0lim

ky D h y+

 ≥ c / (1 – λn), because Dk > z*. Then p(Dk, 
k) ≥ p(Dk, k – 1), according to assertion (b) of lemma 10. 
According to assertion (а) of this lemma p(  y, k – 1) does 
not decrease in y in ∆k–1. Hence, p(Dk–1, k – 1) ≤ p(Dk, k 
– 1) ≤ p(Dk, k). Repeating the reasoning let us prove that 
p ≥ p(Dk, k) ≥ p(Dk–1, k – 1) ≥ … ≥ p(Dr+1, r + 1). Note 
that F(u(Dr+1, r + 1), Dr+1) = 0 according to lemma 6 and 
gr+1(u(Dr+1, r + 1), Dr+1) = 0 in (9), therefore applying lem-
ma 9 when k = r, u = u(Dr+1, r + 1) and z = Dr+1, we obtain 
p(Dr+1, r + 1) ≥ p(Dr+1, r). Finally, according to assertion 
(a) of lemma 10, p(z*, r) ≤ p(Dr+1, r) ≤ p.
Thus, if z* ∈ ∆r, then p(z*, r) ≤ p for any concedent’s strat-
egy u = (  p, q) ∈ U. If z* ∈ (Dr, Dr+1) or r = n – 1 and z* = 
Dn, then p* = p(z*, r) ≤ p. Assume z* = Dr and r < n. Then it 
follows from assertion (b) of lemma 7 that p(Dr, r) + q(Dr, 
r) = ( )0lim

ry D h y+

 ≥ c / (1 – λn), and according to asser-
tion (b) of lemma 10, p(z*, r – 1) ≤ p(z*, r) ≤ p. Now from 
definition p* follows p* ≤ p. So, for any concedent’s strategy 
u = (  p, q) ∈ U we obtain p* ≤ p. We proved above that u* ∈ 
U, therefore p* = min{ p | (  p, q) ∈ U}.
Theorem 3 demonstrates that if the concedent declares a 
concession with parameters p* and q*, then z* is includ-
ed in the concessionaire’s response, and it will have no 
grounds to refuse to create this particular heat generating 
capacity. Therein the concedent’s goal is achieved in the 
equilibrium at the minimal tariff.
Consequence 3. In the equilibrium the concessionaire’s 
NPV is zero.
Proof. By convention u* is one of strategies u(z*, r) and 
u(z*, r – 1) or their linear combination. Then F(u*, z*) = 
0 follows from lemma 6 in the first two cases and from 
linearity F(u, z) in u – in the third case.

One-Parametric Model
The concession mechanism offered above with q > 0 
implies penalisation of the concessionaire for each unit of 
unsatisfied demand. Let us examine the results which may 
be obtained from a one-parametric model which has no 
(equals zero) parameter q.
As before, we assume that the concessionaire develops the 
capacity of z, and then on each day i of the heating season 
it chooses the rate of its usage xi(z), maximising the cur-
rent profit. The concedent makes the first move defining 
the tariff p ≥ 0, and the concessionaire makes the second 
move choosing the capacity z ∈ {0} ∪ [z0, Dn]. An ana-
logue of condition (1) which in the two-parametric model 
guarantees that the concessionaire does not stop heat 
supply even at the minimal temperature, in the one-para-
metric model is the inequality p(1 – λn) ≥ c.     (15)
If it holds then at the capacity of z average daily temper-
ature tj on the day i of the heating season the concession-
aire will choose xi(z) = min{z, Dj}. 
Concedent’s gain function is: ( )1

1 ,H p z  = – p, if z ∈ [z1, 
Dn] and p(1 – λn) ≥ c, otherwise ( )1

1 ,H p z   = 0. 
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The net present expected profit of the concessionaire is 
written as
F1(  p, z) = –A(z) + α[ pEµ(z) – cEx(z)].     (16)
It follows from (3), (5) and (16) that 
F1(  p, z) = F(u, z) + αqEν(z),  where u = (  p, q),      (17)
where F(u, z) – the concessionaire’s expected NPV within 
the planned period in the two-parametric model. If con-
dition (15) is met, then analogues of assertions of lemma 
3 hold: function F1(   p, z) is continuous in z within the in-
terval of [D1, Dn] and concave in z within this interval; it is 
differentiable in z in [z0, Dn] everywhere, except for points 
Dk, and in these points it has one-sided derivatives in z. 
When z ∈ ∆k from (16) and lemma 1 follows that 
F1(  p, z) = –A(z) + α[z(  pM1(k) – cM2(k)) +  pM3(k) – 
cM4(k)] =

( )

( )( ) ( )( ) ( )
1 1

1 1 .     18
k n

j j j j j
j j k

A z

z D b p c b p cα λ λ
= = +

− +

 
 + − − + − −
  
∑ ∑

Designation. For z ∈ ∆k assume ( )1 ,kg p z   = – A’(z) + 
α[ pM1(k) – cM2(k)]. 

The value ( )1 ,kg p z  – derivative of function F1(   p, z) in z 
when z ∈ (Dk   , Dk+1), left-side derivative when z = Dk+1 and 
right-side derivative when z = Dk. If u = (p, q), then gk(u, 
z) = ( )1 ,g p z쐿 . 

The concessionaire’s gain function: ( )1
2 ,H p z  = F1(  p, z), if 

z ∈ [z0, Dn], and ( )1
2 ,0  H p  = 0. 

The concessionaire’s strategy is function z(  p) which 
indicates the concessionaire’s response to any concedent’s 
strategy p. 

Definition and Designations 
Z1(  p) = Argmax{F1(   p, z) | z ∈ [z0, Dn]}, R1(  p) = Argmax {

( )1
2 ,H p z  | z ∈ {0} ∪ [z0, Dn]}.

The pair of strategies  ( )z p  and p  is a equilibrium if 
( )z p  ∈ R1(  p) for all p ≥ 0 and 

( )( ) ( )( )1 1
1 1, max{ , | 0}.H p z p H p z p p= ≥

Let us assume that P = {  p | p ≥ c / (1 – λn), R1(  p) ∩ [z1, Dn] 
≠ ∅}. 
For z ∈ ∆k assume p1(z, k) = сM2(k) / M1(k) + 
A’(z) / αM1(k).
R1(  p) – representation of the concessionaire’s response. If 
z ∈ Z1(  p) then z ∈ R1(  p) is equivalent to F1(  p, z) ≥ 0. The 
concedent looks for the minimal value of p out of P. At 
any p > 0 the concessionaire chooses z(  p) ∈ R1(  p). All z 
∈ R1(  p) are equal for the concessionaire, therefore let us 
assume that z(  p) ∈ Z1(  p) if p ∈ P. Both p1(z, k – 1) and 
p1(z, k) are defined for z = Dk ∈ (D1, Dn). An analogue of 
lemma 4 with replacement of Z(u) with Z1(   p) and gk(u, z) 
in ( )1 ,kg p z  holds. 
Lemma 11. Assume z ∈ ∆k. 

(а) ( )( )1
1 , ,kg p z k z  = 0 and p1(z, k) = p(z, k) + q(z, k). If z 

∈ (Dk   , Dk+1] then p1(z, k) = h(z). 
(b) z ∈ Z1(  p) if and only if one of the following conditions 
is fulfilled: z = D1 and p ≤ p1(z, k); z ∈ (Dk   , Dk+1) and p = 
p1(z, k); z = Dk +1 < Dn and  p1(z, k) ≤ p ≤ p1(z, k +1); z = Dn 
and  p ≥ p1(z, n – 1).
Proof. Assertion (a) follows from definitions 

( )( )1
1 , ,kg p z k z , p1(z, k), u(z, k) and h(z). Function 

( )1 ,kg p z  does not decrease in p, therefore any relation 
between ( )1 ,kg p z  and zero (less than, equal or greater 
than) is equivalent to the identical relation between p and 
p1(z, k). Now assertion (b) follows from the analogue of 
lemma 4 for one-parametric model.
6. Comparison of Equilibrium in the One-Parametric and 
Two-Parametric Models 
Let us assume that u* = (  p*, q*) and z(u) are equilibrium 
strategies of participants in the two-parametric model, z* 
= z(u*) ∈ (Dr, Dr+1]. Let us also assume that p1 and z1(  p1) 
are equilibrium strategies of participants in the one-para-
metric model where z1(  p1) = *

1z  ∈ (Ds, Ds+1]. 

Theorem 4. *
1z  ≥ z* and p1 ≥ max{  p*, p* + q*}.

Proof. If it is granted that *
1z  < z*. Then p1 ∈ P and *

1z  ∈ 
Z1(  p). From assertion (a) of lemma 7 follows h(y)  < c / (1 
– λn) for y ∈ [ *

1z , z*). If *
1z  ≠ Ds+1 then p1 = ( )*

1h z  accord-
ing to 11. If *

1z  = Ds+1 then from *
1z  < z* follows Ds+1 < Dn 

and using lemma 11 we obtain 

p1 ≤ ( )*
1 , 1p z s +  + ( )*

1 , 1q z s +   = ( )*
1

lim y z h y


  < c / (1 
– λn). 
In all cases p1 < c / (1 – λn), which contradicts p ∈ P. 
Consequently, *

1z  ≥ z*, hence *
1( )k z  = s ≥ r = k(z*). If 

( )*
1 ,q z s  ≥ 0 then from lemma 11 follows p1 ≥ ( )*

1 1 ,p z s  
= ( )*

1h z  ≥ ( )*
1 , .p z s  Let us assume that ( )*

1 1 ,p z s  =

( )*
1h z  ≥ ( )*

1 ,p z s  < 0. Then with p1 < ( )*
1 1 ,p z s  = ( )*

1h z  
≥ ( )*

1 ,p z s  we have: 

( ) ( ) ( )* * *
1 1 1 1 1 1,F p z p E z cEx zµ= − <

( ) ( ) ( ) ( ) ( )
( )

* * * * *
1 1 1 1 1

* *
1 1

, ,

( , , ) 0,

p z s E z cEx z q z s E z

F u z s z

µ ν− − =

= =

And this contradicts the condition of *
1z  ∈ R1(  p1). It 

means that p1 ≥ ( )*
1 1 ,p z s  in all cases.

Function p(z, k(z)) does not decrease in z (see lemmas 9 
and 10), therefore from z* ≠ Dr+1 it follows that p* = p(z*, 
r) ≤ ( )*

1 1 ,p z s . If z* = Dr+1 then s > r; from definition of p* 
and lemma 10 we obtain p* ≤ p(z*, r + 1) ≤ *

1p(z ,  s)) . In 
all cases p1 ≥ p* because p1 ≥ ( )*

1 1 ,p z s .
It is obvious from definition of u* that either p* + q* 
= c / (1 – λn), or gr(u*, z*) ≤ 0. Consequently, if p < 
p* + q* two variants are possible : p < c / (1 – λn) or 

( ) ( ) ( )1 * 1 * * * * *,  ,   , 0r r rg p z g p q z g u z< + = ≤ . 
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Function ( )1 ,kg p z  does not increase in ∆k, and for con-
cave function F1(  p, z) the left-hand derivative in any point 
of z is not less than the right-hand derivative, therefore 

( )1 *,rg p z  < 0 implies ( )1 *,sg p z  < 0. In both cases we 
have a contradiction with *

1z  ∈ R1(  p1). In means that p1 ≥ 
p* + q*.
Thus, in the two-parametric model the equilibrium capac-
ity and equilibrium price of heat energy do not exceed the 
corresponding indicators of the one-parametric model. 
The following result shows that *

1z  = z* and p1 > p* under 
“normal” conditions (when q* ≥ 0). 
Consequence 2. If q* ≥ 0 then in the one-parametric 
model there is equilibrium with the following parameters 

*
1z  = z* and p1 = p* + q*. 

Proof. Let us assume that p = p* + q*. Inasmuch as p1 ≥ p* + 
q* (theorem 4) it is sufficient to prove that p ∈ P and z* ∈ 
R1(  p). If p’ = p + q and u = (  p, q) then ( )1 ',kg p z  = gk(u, z) 
for all k and z ∈ ∆k. Then from z* ∈ Z(u*) of lemma 4 and 
its analogue for one-parametric model it follows that z* ∈ 
Z1(  p). From z*∈ R(u*), (17) and q* ≥ 0 follows F1(  p, z*) ≥ 
F1(  p*, z*) ≥ F(u*, z*) ≥ 0, therefore p1 ∈ P.
In the two-parametric model the expected NPV of the 
concessionaire in equilibrium equals zero. In the one-par-
ametric model this indicator may be positive (which 
means that the aggregate expected discounted costs of 
the community party (the consumer) exceed the expect-
ed discounted costs of the concessionaire). For example, 
F1(  p1, z

*) > F1(  p*, z*) > F(u*, z*) in the situation described 
by consequence 2 with q* > 0.

Results and Conclusions
In the two-parametric model the concedent defines 
the required consistency of heat supply σ and chooses 
parameters p and q (tariff and penalty for failure to fulfill 
normative delivery of heat). With these parameters the 
concessionaire, maximising NPV, chooses z (the enter-
prise capacity), and defines the amount of generation of 
heat energy each day. We have proven the existence of, 
and found the method of creating Stackelberg equilibri-
um. The properties of this equilibrium are as follows: a 
capacity of z* ensures sufficient consistency of heat supply; 
the concessionaire utilises the full extent this capacity to 
satisfy the normative demand; the price p* of heat energy 
covers its price cost c; the net present expected profit of 
the concessionaire is zero; and finally, p* is the minimum 
price at which the abovementioned conditions may be 
fulfilled.
If the concessionaire’s expenses for the modernisation of 
the heat supply system K1 are too high the “penalty” q* 
becomes negative. Inasmuch as p* ≥ с the concessionaire’s 
lost profits correspond to the unsatisfied demand. If q* < 0 
this short-received profit is reimbursed by the concedent 
which pays |q*| for each unit of unsatisfied demand. Re-
imbursements to the concessionaire are included in many 
real concession agreements as a “guaranteed minimum 
income” (GMI). Our model indicates in which cases such 

payments are necessary, and helps to define their amount. 
It is true that if z* ∈ ∆r then u* = u(z*, r), or u* = u(z*, r – 1), 
or u* = (1 – γ)u(z*, r – 1) + γu(z*, r). For the first two cases, 
assertion (a) of consequence 1 indicates the concession-
aire’s maximum expenses for the transmission system pro-
ject with which q* ≥ 0. It is easy to calculate such thresh-
old value for the third version of definition u* as well. In 
particular, q* ≥ 0 if the concessionaire does not invest in 
modernising heat supply systems. By reducing the conces-
sionaire’s contribution towards modernisation of the heat 
supply systems one can always ensure non-negativeness of 
the penalty in the equilibrium.
The concessionaire’s expected NPV in equilibrium equals 
zero, nevertheless it is possible to ensure normal entrepre-
neurial profit for it by choosing the discount rate δ, i.e. the 
price of investments. However, it follows from (11) that 
when δ increases p* grows as well, whereby the consumers’ 
payments may be socially unacceptable.

Conclusion
As shown in section 6 the two-parametric model is more 
beneficial for the community party / consumers in terms 
of value indicators. An important advantage of this model, 
in our opinion, is that it is better protected from the con-
cessionaire’s opportunistic behaviour, and makes violation 
of the agreement unprofitable for it. If the concessionaire 
develops the capacity of z < z* then with equal equilibrium 
values of parameters (  p* and q*) its net present expected 
profit will not be positive (as a rule, it will be negative).
The one-parametric model does not possess such a prop-
erty. With the equilibrium value of heat energy (p1) and 
capacity z < *

1z , the concessionaire’s profit may be positive 
(though not maximal). If that is granted, for example, the 
initial capacity z0 is positive and z0 ∈ ∆k. Then with z = z0 
and price p1, in accordance with (18) the concessionaire 
will have the following profit 

( ) ( ) ( )( )

( )( ) ( )

1 1 0 0 0 1
1

1
1

, [ 1

1 ].     19
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From the definition of equilibrium follows the proposition 
p1(1 – λn) ≥ c, and so the expression in square brackets is 
non-negative. If it equals zero then F1(  p1, z) < 0 for all z > 
0, and this contradicts the condition p1 ∈ P. Hence, the ad-
dend on the right side of formula (19) is positive. In such 
a circumstance, an unscrupulous concessionaire may get a 
positive profit without making any investments or having 
necessary operating expenses, but selling heat energy at 
price p1. In the two-parametric model such concessionaire 
would have gone bankrupt paying penalties for short-de-
livery of heat energy, and in the one-parametric model the 
concedent may simply resort to administrative and legal 
remedies. This all goes to say that an economic mechanism 
which inhibits the concessionaire’s opportunistic behav-
iour is “embedded” in the two-parametric model. There 
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is no such mechanism in the present generally accepted 
one-parametric model. Therefore, practical implemen-
tation of the two-parametric model is possible only after 
modification of the concession legislation.
A simplified version of the model was tested successfully 
in the master’s thesis by S.A. Klimentieva (Novosibirsk 
State University, Faculty of Economics, 2018, advisor – 
A.B.Khutoretsky), using construction of a boiler-house in 
the microdistrict of Razdolny, in the town of Berdsk, as an 
example (at the time of writing, the project has not been 
implemented). The calculated price of heat energy turned 
out to be 9.6% less than the current actual price, and 7.5% 
less than the design price, and the design capacity and cap-
ital costs 12% less than corresponding project parameters.
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