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ABSTRACT In eukaryotic cells, the nonsense-mediated decay (NMD) pathway degrades mRNAs with premature 
stop codons. The coupling between NMD and alternative splicing (AS) generates NMD-sensitive transcripts 
(NMD targets, NMDTs) that play an important role in the gene expression regulation via the unproductive 
splicing mechanism. Understanding this mechanism requires proper identification of NMDT-generating AS 
events. Here, we developed NMDj, a tool for the identification, classification and quantification of NMDT-
generating AS events which does not rely on the best matching transcript partner principle employed by 
the existing methods. Instead, NMDj uses a set of characteristic introns that discriminate NMDTs from all 
protein-coding transcripts. The benchmark on simulated RNA-Seq data demonstrated that NMDj allows to 
quantify NMDT-generating AS events with better precision compared to other existing methods. NMDj rep-
resents a generic method suitable for the accurate classification of arbitrarily complex AS events that gener-
ate NMDTs. The NMDj pipeline is available through the repository https://github.com/zavilev/NMDj/. 
KEYWORDS unproductive splicing, nonsense mediated decay, NMD, splicing, regulation.
ABBREVIATIONS NMD – Nonsense Mediated Decay; NMDT – NMD target transcript; PTC – premature termi-
nation codon; AS – alternative splicing; UTR – untranslated region; nt – nucleotide.

INTRODUCTION
Eukaryotic cells express a large number of transcripts 
from each gene through alternative splicing (AS). By 
rough estimates, human protein-coding genes pro-
duce as many as ~150,000 expressed transcripts, an 
average of 7.4 isoforms per gene [1]. However, only 
half of these transcripts encode full-length proteins, 
while the remaining part may contain premature 
termination codons (PTC) [1, 2]. In eukaryotes, such 
transcripts are selectively eliminated by the pathway 
called the nonsense-mediated decay (NMD) [3].

In recent studies, it has been proposed that NMD 
not only prevents the translation of truncated pro-
teins resulting from nonsense mutations and splicing 
errors, but is also involved in a wide range of biologi-
cal processes, including gene expression regulation 
[4]. Most RNA-binding proteins (RBPs) control their 
own expression levels through a negative feedback 
loop in which the gene product binds to its cognate 
mRNA and induces AS that generates a PTC [5, 6]. 
It has been suggested that much of the impact of AS 
on the eukaryotic transcriptional landscape is medi-
ated by the generation of NMD isoforms to limit gene 
expression, rather than the expansion of proteome di-
versity [2].

Local splicing changes, that is, the ones confined to 
a local region in the pre-mRNA, are one of the main 
sources of transcripts that are NMD targets (NMDT). 
Among the main types of local AS events, one can 
distinguish the so-called poison and essential exons 
which lead to the generation of NMDT upon exon in-
clusion and skipping, respectively, as well as the use 
of alternative 5’- and 3’-splice sites and intron reten-
tion [7]. Some of them (for instance, intron retention) 
may be involved in a particular biological process or 
may be preferentially regulated by the same splic-
ing factor [8, 9]. However, the diversity of AS events 
is not limited to the main types listed above [6]. The 
task of characterizing complex AS events leading to 
the emergence of NMDT appears in many studies re-
lated to gene expression regulation [10–12].

To date, the only solution to this problem has been 
provided by the NMD Classifier [13]. Its approach is 
based on the assumption of minimal evolution/regu-
lation, according to which NMDTs are the result of 
evolutionary or regulatory events that alter minimally 
the reading frame of a protein-coding transcript. That 
is, NMD Classifier finds the most similar coding tran-
script (in terms of shared nucleotide sequence) for 
each NMDT and considers the differences between 
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the best partner transcript and NMDT which cause 
a frameshift to be the generating AS event. However, 
the probability of NMDT being derived from a pro-
tein-coding transcript via AS depends not only on the 
similarity in their exon-intron architectures but also 
on their expression levels. The coding transcript with 
the highest expression level is more likely to be the 
source of NMDT [14]. Furthermore, NMDT may be 
derived from different transcripts with comparable 
expression levels, which calls into question the valid-
ity of the approach based on the selection of only one 
matching transcript partner.

In revisiting this problem, we developed NMDj, a 
tool for systematic search, classification and quanti-
fication of NMDT-generating AS events which takes 
into account all annotated transcripts and reports all 
introns that distinguish NMDTs from protein-cod-
ing transcripts. NMDj provides a more detailed clas-
sification of NMDT-generating AS events than the 
NMD Classifier. The coupling between NMD and AS 
is a crucial post-transcriptional mechanism of gene 
expression regulation [15]. Therefore, developing a 
method for searching, classifying, and quantifying 
AS events leading to NMDT which would take into 
account all the diversity of transcript isoforms is 
challenging. The NMDj method is aimed at tackling 
exactly this problem. It receives a set of transcripts 
in the form of an annotation database or transcript 
models constructed from RNA sequencing data as 
input, and provides the characterization of NMDT-
generating AS events and their quantification as out-
put.

EXPERIMENTAL

Genome annotation
The annotations of the human (GRCh38, version 108), 
mouse (mm10, version 113), zebrafish (danRer11, 
version 113), and Drosophila (dm6, version 113) ge-
nomes were downloaded from Ensembl in GTF for-
mat [16]. Only the transcripts of protein-coding genes 
with at least one annotated NMDT were considered. 
Transcripts without an annotated start or stop codon 
were filtered out. Genes without either NMDT or pro-
tein-coding transcripts were not considered.

NMD Classifier
The NMD Classifier source code was downloaded 
from [13]. To quantify local splicing alterations, the 
NMD Classifier output was converted to a list of al-
ternative splice junctions corresponding to the four 
main types of AS events: alternative exons, alternative 
5’- and 3’-splice sites, and intron retention (NMD_in, 
NMD_ex, A5SS, A3SS, NMD_IR, nNMD_IR). 

The NMDj pipeline
The pipeline departs from a transcript annotation 
file in GFF/GTF format [17]. The following four fea-
tures (”transcript”, ”exon”, ”start_codon” and ”stop_
codon”) and three attributes (”gene_id”, ”transcript_
id”, ”transcript_type”) are considered. In addition 
to the main GFF/GTF file, NMDj can also accept a 
secondary input containing “transcript” and “exon” 
features, along with the “transcript_id” attribute. 
In this case, each transcript from the additional file 
is assigned to a gene from the main file based on 
the maximum number of common introns and a se-
quence overlap of at least 50%. For transcripts that 
were assigned to genes, the longest open reading 
frame is selected from those containing the anno-
tated start codons and the corresponding start and 
stop codon positions are added to the annotation. As 
in Ensembl [18], a transcript is annotated as NMDT 
if there is an intron at least 50 nt downstream of 
the stop codon position.

Next, for each NMDT, NMDj considers the genomic 
interval spanning from the last splice site shared by 
NMDT and any protein-coding transcript with the 
same phase, or start codon in the absence of such, to 
the 3’end of the exon with PTC, or the closest down-
stream transcript end, if NMDT shares its stop co-
don with a protein-coding transcript. The character-
istic introns are defined as all introns overlapping the 
genomic interval of interest except those shared by 
the NMDT and any coding transcript. The NMDT-
generating AS event is defined as the set of char-
acteristic introns described above. AS events from 
a pair of NMDTs are merged into a cluster if the 
NMDTs share at least one characteristic intron.

To classify NMD-generating AS events, NMDj by 
default uses MANE-Select transcripts as a reference, 
since they tend to be the most expressed ones [19]. 
However, a user-defined input can also be provid-
ed. NMDj builds a directed acyclic splicing graph us-
ing the splice sites of NMDT and splice sites of the 
reference transcript as nodes and introns and ex-
ons as edges, and it searches for “bubbles” defined 
by vertex-independent paths that contain character-
istic introns [20, 21]. NMDj reports all found pairs 
of vertex-independent paths in the following form: 
X1…Xn : Y1…Ym, where Xi and Yj are “D” (donor) and 
“A” (acceptor) symbols, and Xi≠Xj and Yi≠Yj when 
j = i ± 1. If the reference transcript set has not been 
specified, then NMDj iteratively compares the NMDT 
with each protein-coding transcript.

The last, optional step is the quantification of AS 
events using RNA-seq split read counts (the input 
table must be provided). NMDj computes the Ψ (per-
cent-spliced-in) values, which estimate the expression 
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level of the NMDT relative to all the transcripts of 
the gene. It is calculated using the formula 
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where A and B are the number of characteristic in-
trons supporting NMDT and protein-coding tran-
scripts, respectively; ai and bj are the number of RNA-
seq split-reads aligned to the respective introns, and 
ki and rj are the weights that account for the number 
of times the characteristic introns occur in NMDT and 
coding transcripts, respectively. The weights ki and rj 
are computed independently for NMDT and coding 
transcripts. The natural requirement that the sum of 
the weights of the characteristic introns of each tran-
script be equal to 1 leads us to a system of n linear 
equations with m unknowns, where n is the number 
of transcripts and m is the number of characteris-
tic introns. By the construction of characteristic in-
trons, such a system is always consistent, but it can 
also have an infinite number of solutions. In general, 
one could make an unambiguous choice of ki and rj 
by imposing regularization constraints on this system. 
However, in NMDj we use the following heuristic al-
gorithm, which allows us to define the value of Ψ in 
accordance with the existing definitions for the main 
types of AS events [6, 11].

Transcripts annotated in the interval are repre-
sented as a graph with the vertices being character-
istic introns, and the edges being the exons (or their 
groups) that connect them. This graph is searched 
for pairs of vertices connected by only vertex-inde-
pendent paths. For each such path, the weights of 
characteristic introns are assumed to be equal to each 
other. For a poison exon, for instance, there will be 
two such paths: one corresponding to exon inclusion 
(with two characteristic introns, each with a weight 
of 0.5), and another corresponding to exon skipping 
(with one characteristic intron, the weight of which 
is equal to 1). After the coefficients of the nodes be-
tween the identified pair are assigned values, these 
nodes are merged into one and the search in the new 
graph continues. At each step, the coefficients of the 
characteristic introns combined into a node are mul-
tiplied by the value assigned to that node and the 
procedure continues until all nodes are merged into 
one. This algorithm works for all simple types of AS 
events, and for complex AS events it works only un-
der the assumption that all vertex-independent paths 
are nested. 

The real and simulated RNA-seq data
To realistically model RNA sequencing data using 
known transcript expression levels, and hence rela-
tive NMDT expression levels, we selected three ran-
dom samples in each of the three tissues (Muscle, 
Liver, and Cerebellum) using the panel of transcrip-
tomic data from the Genotype-Tissue Expression pro-
ject (GTEx [22]. The choice of the tissues was moti-
vated by the fact that they differ most drastically in 
terms of AS [23, 24]. Transcript expression levels in 
the selected samples were obtained by rsem-calcu-
late-expression with the --estimate-rspd option [25]. 
The expression levels of NMDTs, best partner tran-
scripts, and MANE-Select transcripts as a fraction of 
the total gene expression were calculated for each 
gene. Sampling was repeated five times, and the re-
sults were averaged.

RNA-seq data simulation was performed by rsem-
simulate-reads based on the transcript expression lev-
els described above. For each sample, 50 mln paired-
end reads were simulated. The simulated reads were 
aligned to the GRCh38 human genome using STAR 
aligner 2.7.3a [26]. Counts of split-reads were obtained 
using the IPSA package with default settings [27]. 
Transcript expression levels in the simulated sam-
ples were quantified by RSEM (as above) [25]; Salmon 
1.10.3, with the options --seqBias --gcBias --posBias 
[28]; and StringTie 2.2.3, with the option -e [29]. To 
convert transcript-level quantification results to Ψ 
values of the AS events, the NMDT expression levels 
(in TPM, transcripts per million) were divided by the 
sum of expression levels of transcripts spanning the 
genomic regions found by NMDj. 

RNA-seq data on NMD inactivation
The results of the experiments on the inactivation 
of NMD components (double knockdown of SMG6 
and SMG7) followed by RNA-seq were obtained from 
Gene Expression Omnibus under the accession num-
ber GSE86148 in the FASTQ format and aligned to 
the human genome assembly GRCh38 (hg38) using 
the STAR aligner v2.7.8a in the paired-end mode. 
Counts of split-reads were obtained using the IPSA 
package in the default settings [27]. 

RESULTS

The NMDj pipeline
The NMDj pipeline consists of three main and three 
auxiliary steps (Fig. 1A). Starting from the transcript 
annotation database, it performs the reading frame 
search and predicts NMDT, if they are not annotat-
ed. NMDT are annotated based on the so-called 50-nt 
rule, which postulates that a transcript is recognized 
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Fig. 1. The NMDj pipeline. (A) The pipeline flowchart. (B–D) The choice of interval boundaries (light blue shading). 
The 5’-boundary is either the last splice site common to NMDT and any coding transcript with the same phase (B), or the 
start codon if there is no such splice site (C). The 3’-boundary is either the donor splice site of the intron following the 
PTC-containing exon (B, C), or the end of the shortest 3’-UTR downstream of the NMDT stop codon (D). (E) An exam-
ple of classification based on vertex-independent paths. NMDT and its reference coding transcript (left) correspond to 
a pair of vertex-independent paths consisting of donor and acceptor splice sites (right). NMDT and protein-coding tran-
scripts, as well as their corresponding characteristic introns (arcs), are shown in red and blue, respectively. Splice sites 
of NMDT are indicated by green arrows if the NMDT frame matches the protein-coding frame, or red otherwise



RESEARCH ARTICLES

VOL. 17 № 2 (65) 2025 | ACTA NATURAE | 79

as an NMD target if it contains an intron at least 
50–55 nt downstream of the stop codon [30]. This 
rule departs from the assumption that exon junction 
complexes that are deposited on pre-mRNA during 
splicing are displaced during the pioneer round of 
translation, and ones that remain bound outside of the 
reading frame serve as a PTC signal [30]. In NMDj, 
we used the threshold of 50 nucleotides because this 
is the accepted value for automatic NMDT annotation 
in Ensembl [16]. However, the number of predicted 
NMDTs changes insignificantly when the threshold is 
increased to 55 nt (Fig. S1).

Once open reading frames are detected and 
NMDTs are annotated for each gene, NMDj begins 
searching for NMD-generating AS events. There exist 
multiple formalisms for describing AS events includ-
ing binary classes (such as poison exons [31]), clas-
sification of connected components in a splice graph 
[32], and local splicing variations [33]. In this work, 
we define an AS event as a set of characteristic in-
trons spanning the following genomic interval. For 
each NMDT, the 5’-boundary of the interval is defined 
to be the 3’-most splice site, which it shares with 
any protein-coding transcript with the same phase 
(Fig. 1B). If no such splice site exists, the 5’ boundary 
is placed at the start codon of NMDT, if it is shared 
with at least one protein-coding transcript (Fig. 1C). 

The 3’-boundary of the interval is defined to be the 
3’-end of the PTC-containing exon or, if NMDT shares 
its stop-codon with a protein-coding transcript, and in 
case it is not a true PTC, it is placed at the nearest 
transcript end (Fig. 1D).

Next, NMDj selects the characteristic introns that 
distinguish NMDT from protein-coding transcripts. 
All the introns that are adjacent to the interval or 
overlap with it, except the ones that are shared by the 
NMDT and at least one protein-coding transcript, are 
considered to be characteristic introns. As a result, 
each NMDT is characterized by a set of characteristic 
introns that originate either from it or from protein-
coding transcripts (Fig. 1B,D, red and blue arcs). The 
characteristic introns are merged into clusters to re-
duce redundancy, as several NMDTs would often pos-
sess the same or very similar sets of characteristic 
introns.

NMDj classifies splicing events into major types 
such as poison (PE) and essential (EE) exons, alterna-
tive splice sites (A5SS, A3SS), and others (Table 1). 
The classification of the AS events is based on the 
concept of vertex-independent paths applied to splic-
ing graphs [20, 34]. In a directed acyclic graph, whose 
nodes are donor (D) and acceptor (A) splice sites, and 
edges are exons and introns, one can define a vertex-
independent path as a pair of paths that do not share 

Table 1. A list of NMDj event types and their synonyms in a classification provided by NMD Classifier 

Type NMDj Description Synonym

DADA:DA PE Poison cassette exon which triggers NMD upon inclusion NMD_in

D(AD)nA:DA PEn n consecutive cassette exons which trigger NMD upon 
simultaneous inclusion multi_NMD_in

DA:DADA EE Essential cassette exon which triggers NMD upon skipping NMD_ex

DA:D(AD)nA EEn n consecutive cassette exons which trigger NMD upon 
simultaneous skipping multi_NMD_ex

ADA:ADA A5SS Alternative 5’-splice sites A5SS

DAD:DAD A3SS Alternative 3’-splice sites A3SS

ADAD:ADAD A5SS+A3SS Both 5’- and 3’-splice sites of the same intron are alterna-
tive A5SS,A3SS

AD:ADAD IR Intron retention which triggers NMD nNMD_IR

ADAD:AD ID Intron excision which triggers NMD NMD_IR

DADA:DADA MXE A pair of mutually exclusive adjacent exons -

AD(AD)nA:ADA A5SS+PEn Alternative 5’-splice site and n consecutive poison exons -

ADA:AD(AD)nA A5SS+EEn Alternative 5’-splice site and n consecutive essential exons -

D(AD)nAD:DAD PEn+A3SS n consecutive poison exons and alternative 3’-splice site -

DAD:D(AD)nAD EEn+A3SS n consecutive essential exons and alternative 3’-splice site -

ADAD:AD(AD)nAD A5SS+EE+A3SS Alternative 5’-splice site, n consecutive essential exons and 
alternative 3’-splice site -
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any nodes except the first and last node (Fig. 1E). 
Each such pair is reported in a symbolic form repre-
senting the sequence of nodes; i.e., a poison exon (PE) 
corresponds to DADA:DA; an alternative 5’- splice-
site (A5SS), to ADA:ADA; and multiple poison exons 
(PEn), to D(AD)nA:DA, where n is the number of ex-
ons. In the final step, NMDj quantifies each group of 
NMDTs by Ψ values based on split read counts from 
RNA-Seq experiments (see EXPERIMENTAL). 

NMDj in application to human and 
model organism transcripts
The application of NMDj to annotated transcripts 
from human, mouse, zebrafish, and Drosophila showed 
that the proportion of NMDTs obeying the 50-nucle-
otide rule is significantly higher in humans and mice 
than it is in zebrafish and Drosophila, which is un-
doubtedly a result of differences in the quality and 
completeness of transcriptome annotations (Table 2). 
However, the frequencies of NMDT-generating AS 
events vary significantly between organisms. While 
in humans and mice NMDTs are generated more fre-
quently through the use of poison and essential exons 
than they are through intron retention, in Drosophila 
and zebrafish the pattern is opposite. According to 
existing estimates, the proportion of intron retention 
among the major AS types is equally low in mam-
mals as it is in other vertebrates and invertebrates 
[35]. Thus, the observed difference between NMDT-
generating AS event frequencies can be explained 
neither by the different levels of abundance of their 
types nor by the different levels of completeness of 
the transcriptome annotation. Rather, the difference 
indicates the peculiarities of the NMD system’s func-
tioning in different taxonomic groups. 

The advantages of NMDj in finding 
NMD-generating AS events
The existing approach to the analysis of NMD-
generating AS events, which is implemented in the 

NMD Classifier, is based on choosing the best part-
ner transcript. The main problem in this approach is 
that other transcripts and their expression levels are 
not taken into account when selecting the best part-
ner transcript. A protein-coding transcript is unlike-
ly to be the main source of NMDT if its expression 
level is low. To illustrate the importance of this issue, 
we applied the NMD Classifier to the Ensembl tran-
scriptome annotation [16] and compared the identified 
set of best partner transcripts with those from the 
MANE-Select annotation considered as the set of the 
most expressed transcripts in each human gene [19].

MANE-Select transcripts were identified as best 
partners only for 25% of NMDTs, while they had a 
significantly higher expression level, as confirmed 
by a random sample of RNA-seq experiments from 
GTEx (Fig. 2A). Furthermore, when the best part-
ner transcript was not MANE-Select, its contribu-
tion to the total gene expression level was comparable 
to that of NMDT. This suggests that the transcript 
that is most similar to NMDT in terms of the shared 
sequence can be at the same time a poor candidate 
for generating NMDT. Moreover, the MANE-Select 
transcripts are not always the most expressed ones. 
Tissues may differ in their most expressed transcripts 
(Fig. 2B) or express several transcripts at comparable 
levels. To address this, NMDj considers all annotated 
transcripts in order to avoid the problem of choosing 
one best transcript partner and clusters NMDTs with 
similar characteristic introns to obtain a concise and 
non-redundant set of AS events (Fig. 2D).

NMDj is particularly useful in genes with a com-
plex splicing architecture. A notable example is HPS1, 
which contains a group of exons with lengths that 
are not multiples of three (Fig. 2C). Skipping of each 
single exon generates a NMDT, unless it is compen-
sated by a downstream AS event that restores the 
coding frame. Simultaneous inclusion of exons 6a and 
7 generates a NMDT. NMD Classifier selects the tran-
script with exon 5 as the best partner. This exon is 

Table 2. NMD-generating AS events in the human and model organism’s transcriptomes

#Tr #NMDT NMDT, %
Fraction of AS events, %

PE  EE A5SS A3SS IR Other

Human 79940 16741 21 18 11 6 8 2 55

Mouse 49951 5339 11 18 18 11 14 4 36

Zebrafish 35040 854 2 11 10 11 12 23 32

Drosophila 30688 1325 4 18 4 12 9 16 41

Note: #Tr – total number of transcripts; #NMDT – number of NMDT; NMDT – fractions of NMTD (in %). Fractions 
(in %) of toxic (PE) and necessary (EE) exons, fractions of alternative 5’-(A5SS) and 3’-splicing sites (A3SS), fractions of 
retained introns (IR) and other events (Other).
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skipped in the NMDT, which indeed disrupts the cod-
ing frame. However, it is also skipped in a protein-
coding transcript, in which its frameshift is compen-
sated by using exon 6 instead of exon 6a and skipping 
exons 7–10. NMDj correctly identifies the last splice 
site, in which the reading frame of NMDT match-
es that of a coding transcript, to be the 3’-boundary 
of exon 6a, which enables the detection of the only 
true NMD-generating AS event; namely, the splice 
junction between exons 6a and 7. It also identifies 
all alternative introns whose excision helps to bypass 
frame shifts. Interestingly, another NMDT with exon 
5 included shares a characteristic intron with the pre-
vious one and is therefore clustered with it by NMDj. 

NMDj provides a more detailed 
AS event classification
We compared the classification of AS events pro-
duced by NMDj and NMD Classifier in application to 
the same human transcriptome annotation (Fig. 3A). 
NMDj was configured to use MANE-Select transcripts 
as a reference. Out of 15,914 NMDTs, NMD Classifier 
and NMDj were able to classify AS events for 15,446 

and 15,265 NMDTs, respectively. However, AS events 
were classified into the same type (Table 1) for only 
60% of NMDTs.

While NMD Classifier subdivides AS events into a 
fixed number of most common types, NMDj is able to 
describe more complex splicing patterns using ver-
tex-independent paths. In the POR gene, for exam-
ple, NMDT differs from protein-coding isoforms by 
alternative 5’- and 3’-splice sites and a cassette exon 
(Fig. 3B). Such events tend to evade many standard 
tools for splicing analysis [31, 32]. The presence of AS 
types, which NMD Classifier is unable to properly 
detect, accounts for a large portion of inconsistencies 
between the two classifications. For example, a num-
ber of events classified by NMD Classifier as poison 
exons (NMD_in) are classified as PE+A3SS and MXE 
by NMDj (Fig. 3A,C). Another advantage of NMDj is 
the ability to classify AS events in 3’-untranslated re-
gions (3’-UTRs). Among the events that induce NMD 
in the 3’-UTRs, the majority are expectedly repre-
sented by intron retention. Moreover, many 3’-UTR 
events do not intersect with the MANE-Select iso-
form (Fig. 3A, S2).

А

C

B Fig. 2. NMDj and NMD Classi-
fier best partner transcripts. (A) 
Transcript relative abundance 
(eCDF is the cumulative distribution 
function) estimated from a random 
sample of RNA-seq experiments 
from GTEx. (B) The proportion 
of genes whose most expressed 
transcripts match between pairs 
of GTEx tissue samples. (C) An 
example of a local NMD-generat-
ing event in the HPS1 gene. The 
characteristic introns originating 
from NMDTs and protein-coding 
transcripts are shown by red and 
blue arcs, respectively. The phase 
of the reading frame is indicat-
ed above the exon boundaries. 
Transcript colors: MANE-Select 
(blue), NMDT (red), best partner 
transcript from NMD Classifier 
(orange), other transcripts (gray – 
NMDT, black — protein-coding). 
The essential exon predicted by 
the NMD classifier is highlighted in 
light-blue; however, NMDT is actu-
ally generated by a splice site shift 
in the MANE-Select isoform
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A relatively small number of other inconsistencies 
may be explained by the fact that NMDj and NMD 
Classifier use different reference transcripts to classify 
AS events. Only 61% of AS were classified in the same 
type when NMDj was configured to use best partner 
transcripts as a reference. A substantial portion of the 
differences seems to be the result of misclassification 
by NMD Classifier. For example, most events attrib-
uted to the “A3SS, A5SS” type by NMD classifier are 
classified as A3SS by NMDj (Fig. 3A). Meanwhile, the 
size of the NMD classifier’s “A5SS,A3SS” class is far 
larger than the size of the “A3SS” class. This is coun-
terintuitive, since the choice between a pair of alterna-
tive 5’-splice sites seems to be independent from the 
choice between a downstream pair of 3’-splice sites 
separated by a long intron [36]. Visual inspection of 
randomly selected individual cases of classification dis-
crepancy confirmed the correctness of the classifica-
tion provided by NMDj (Fig. S3). 

NMDj benchmark on simulated and real data
NMD-generating AS events can be used to assess rel-
ative NMDT expression levels quantitatively using 
RNA-seq data. To evaluate the accuracy of NMDj in 
quantifying AS, we simulated RNA-seq reads based 
on the average transcript expression levels in hu-
man tissues. The estimated Ψ values computed from 
split reads aligned to characteristic introns were com-
pared to the ground truth Ψ values, defined as the 
NMDT isoform abundance as a fraction of the total 
abundance of all transcripts of the given gene. As 
a measure of distance, we used the mean squared 
error (MSE) over all Ψ values across all the NMDT 
isoforms tested. It turned out that NMDj performed 
comparably to existing state-of-the-art methods for 
transcript-level quantification, while the MSE values 
for NMD classifier were substantially larger (Fig. 4A). 
Since the methods used to calculate the Ψ metric in 
NMDj and NMD Classifier were identical, this again 

Fig. 3. AS event categori-
zation. (A) A comparison of 
classifications by NMDj and 
NMD Classifier. Each cell 
represents the number of 
NMDTs classified into cor-
responding types by NMDj 
(rows) and NMD Classifier 
(columns). (B, C) Examples 
of rare NMD-generating AS 
events. The rest of the leg-
end is as in Fig. 2 
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Fig. 4. Comparison of NMDj and NMD Classifier predic-
tions. (A) Mean squared error (MSE) of Ψ values estimat-
ed by different methods from simulated RNA-Seq data 
relative to the ground truth values. (B) Statistically signifi-
cant splicing changes of NMDT-generating and non-NMDT 
protein-coding AS events (cassette exons, alternative 
splice sites and intron retention) upon NMD inactivation 
by cycloheximide, quantified by NMDj. **** denotes statis-
tically significant differences at the 0.1% significance level 
(Mann–Whitney test) 

А B suggests that not only the best partner transcript but 
also other transcripts contribute significantly to the 
Ψ value.

To confirm that AS events predicted by NMDj ac-
tually generate NMDT, we compared the changes in 
the Ψ values of AS events generating and not gener-
ating NMDTs in NMD inactivation experiments imple-
menting knockdown of its two key factors: SMG6 and 
SMG7 [14]. AS events that did not generate NMDT 
included cassette exons, alternative splice sites, and 
retained introns that had been found in non-NMDT 
protein-coding transcripts. As expected, upon inacti-
vation of NMD, the Ψ values of NMD-generating AS 
events increased significantly more than did the Ψ 
values in coding transcripts (Fig. 4B). 

DISCUSSION
The approach implemented in NMDj does not rely 
on a single best partner transcript, and that allows it 
to identify and properly describe many more NMD-
generating AS events as compared to NMD Classifier. 
However, NMDj was unable to locate characteristic 
introns for some NMDTs (1,139 transcripts), which 

Fig. 5. (A) Coordinated splicing of distant cassette exons in the ERLEC1 gene. (B) Coordinated splicing of adjacent 
exons in the FGFR2 gene. Besides mutually exclusive splicing of exons 8a and 8b, transcript isoforms with coordinated 
skipping of exons 7–9 (NMDT) and ones with coordinated skipping of exons 7–8a,b and 8a,b–9 (protein-coding) are 
annotated. Simultaneous inclusion of exons 8a and 8b generates NMDT. Legend colors are as in Fig. 2 
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in most cases was the result of coordination between 
distant AS events and the usage of alternative start 
and stop codons. For instance, in the ERLEC1 gene, 
simultaneous inclusion and exclusion of non-adjacent 
exons 5 and 7 preserves the reading frame, while in-
clusion of only one exon from the pair leads to NMDT 
(Fig. 5A). This example demonstrates that it is not 
always possible to establish a causal link between a 
particular local AS event and NMDT, because NMD 
sensitivity is a global property of a transcript which 
depends on coordination between distant AS events, 
while local AS events individually may not be captur-
ing these global properties. Like other approaches that 
take into account only local AS events, NMDj is fun-
damentally incapable of correctly characterizing the 
cause of such NMDTs.

Local AS events are known to regulate gene ex-
pression by AS switching to NMDT production [5, 
6]. Such switching is mediated by RNA-binding pro-
teins that bind to the cis-elements in pre-mRNA and 
is typically regulated locally [37]. In contrast, little is 
known about the functional outcomes and exact regu-
latory mechanisms of coordination for AS events at 
large distances [38–41]. While the coordination be-
tween distant AS events could be important for pro-
ducing protein isoforms with distinct functions, in 
some cases cells could use it to generate NMDTs. An 
example of this is the coordinated, mutually exclu-
sive splicing of exons 8a and 8b in the FGFR2 gene, 
which leads to functional protein products with dif-
ferent ligand specificities [41] (Fig. 5B). The inclusion 
of exon 8a is promoted by the epithelial-specific pro-
teins ESRP1 and ESRP2, which bind to the same reg-
ulatory sequence inside the intron [42], but simulta-
neous inclusion of both exons generates NMDT. Thus, 

switching between FGFR2 isoforms is regulated on 
the level of local AS, while coordination of mutually 
exclusive exon choices is achieved by the elimination 
of an NMDT.

In sum, a simultaneous analysis of all splice iso-
forms, instead of single best-matching transcript 
partners, allows NMDj to identify NMD-generating 
AS events with higher accuracy. However, the tech-
nique shares a common limitation with other meth-
ods in classifying the coordinated action of distant AS 
events. Their analysis requires fundamentally differ-
ent approaches. However, it seems more likely that 
NMD induces a non-random association of AS events 
than a regulated association of AS events induces 
NMD. Thus, the analysis of coordinated AS events 
falls outside the scope of this study for both technical 
and conceptual reasons.

The method developed in this paper can be used 
to study gene expression regulation via unproductive 
splicing [6]. In particular, it can be applied to problems 
such as searching for specifically expressed NMDTs 
and assessing the activity of the NMD system as a 
whole. Thus, NMDj closes the existing gap in the 
toolkit for studying the conjugation between AS and 
NMD. 

The results presented here include data obtained 
from the GTEx Portal (dbGaP accession number 

phs000424/GRU).
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