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РЕФЕРАТ Формирование симбиотической кишечной экосистемы – необходимый этап адаптации но-
ворожденного ребенка. Микробиом кишечника глубоко недоношенных новорожденных характери-
зуется нестабильностью, снижением микробного разнообразия с преобладанием грамотрицательных 
Proteobacteria, что сопряжено с одним из ключевых патогенетических механизмов развития некроти-
зирующего энтероколита (НЭК). Короткоцепочечные жирные кислоты (КЦЖК) представляют собой 
основные бактериальные метаболиты, играющие важную роль в поддержании целостности кишечного 
барьера и регуляции иммунологической реактивности кишечника. В обзоре обсуждается роль кишеч-
ной микробиоты и КЦЖК при некротизирующем энтероколите у новорожденных в аспекте потенци-
альных диагностических и терапевтических возможностей. В клинических исследованиях содержания 
КЦЖК в кале недоношенных новорожденных с НЭК обнаружено выраженное снижение общего уровня 
КЦЖК и большинства бактериальных метаболитов в отдельности, что подтверждено в ряде модель-
ных экспериментов. Для уточнения роли КЦЖК в развитии НЭК, определения их диагностического 
потенциала и возможностей создания комплексных про- и постбиотических формул необходимо про-
ведение многоцентровых мультиомиксных исследований на большой выборке глубоко недоношенных 
новорожденных.
КЛЮЧЕВЫЕ СЛОВА некротизирующий энтероколит, глубоко недоношенные новорожденные, диагности-
ка, газовая хроматография с масс-спектрометрией, короткоцепочечные жирные кислоты, микробиота.
СПИСОК СОКРАЩЕНИЙ ГХ – газовая хроматография; ЖХ – жидкостная хроматография; КЦЖК – ко-
роткоцепочечные жирные кислоты; МС – масс-спектрометрия; НЭК – некротизирующий энтероколит; 
ОРИТН – отделение реанимации и интенсивной терапии новорожденных; ПЦР – полимеразная цепная 
реакция.
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ВВЕДЕНИЕ
Некротизирующий энтероколит (НЭК) – тяжелое 
заболевание желудочно-кишечного тракта ново-
рожденных, в основе которого лежит выраженное 
воспаление стенки кишечника с последующим не-
крозом и возможной перфорацией. НЭК является 
наиболее часто встречающимся серьезным желу-
дочно-кишечным осложнением недоношенных детей 
и редко встречается у детей, рожденных после 32 
недель [1]. Основными предрасполагающими фак-
торами развития чрезмерного воспаления в кишеч-
нике являются незрелость желудочно-кишечного 
тракта, нарушение процесса бактериальной колони-
зации и отсутствие энтерального питания грудным 
молоком [2]. Заболеваемость НЭК обратно пропор-
циональна гестационному возрасту, составляя от 2 
до 10% у глубоко недоношенных детей (28–32 не-
дели гестации) и достигая 55% среди экстремально 
недоношенных новорожденных [3]. 

Несмотря на достижения современной медици-
ны, на протяжении многих лет заболеваемость НЭК 
остается относительно стабильной среди детей 
с очень низкой массой тела при рождении и явля-
ется одной из основных причин неблагоприятных 
исходов в этой когорте детей. Необходимость хи-
рургического вмешательства по поводу перфорации 
кишечника или подозрения на нее при НЭК состав-
ляет от 20 до 52%. Летальность у детей очень низ-
кой массы тела при развитии хирургического НЭК 
в развитых странах составляет в среднем 30%, до-
стигая 50–72% среди новорожденных с экстремаль-
но низкой массой тела (ЭНМТ) [4, 5]. Клинические 
наблюдения также демонстрируют крайне неблаго-
приятное течение НЭК при сочетании таких факто-
ров, как врожденная пневмония, гемодинамически 
значимый артериальный проток и экстремально 
низкая масса тела при рождении [6]. У 22.7–35% 
новорожденных, перенесших хирургическую ста-
дию НЭК, развивается синдром кишечной недо-
статочности – снижение функции кишечника ниже 
уровня, необходимого для абсорбции макронутри-
ентов и/или воды и электролитов [7]. Помимо по-
ражения желудочно-кишечного тракта, реализация 
НЭК значительно повышает риск неблагоприятных 
неврологических исходов. Воспаление в кишечни-
ке, как в органе с поверхностью большой площа-
ди, обширной васкуляризацией и высокой степенью 
концентрации иммунных клеток, может способ-
ствовать не только перфорации кишечной стенки, 
но и развитию системных эффектов заболевания, 
оказывающих влияние на другие ткани и органы [8]. 
Согласно проспективным когортным исследованиям, 
изучавшим отдаленные исходы НЭК, задержка ней-
ропсихического развития отмечается у 37.6–56.8% 

недоношенных массой менее 1000 г при рождении, 
что значительно превышает показатели у детей 
без НЭК [9]. 

С учетом высокой распространенности НЭК 
и значительного риска неблагоприятных исходов 
одним из приоритетных направлений в изучении 
этого заболевания является разработка инноваци-
онных предиктивных и диагностических методов. 
Идентификация ранних специфичных биомаркеров 
НЭК открывает возможность выявления чрезмер-
ного воспалительного процесса в кишечнике еще 
до появления клинических симптомов [10]. Такой 
подход позволит своевременно выделять группы 
наибольшего риска, что, в свою очередь, обеспечит 
раннее начало консервативного лечения и перспек-
тивное внедрение таргетных инновационных ме-
тодов терапии. Особенно важным представляется 
использование неинвазивных методов предикции 
и диагностики, которые исключают флеботомиче-
ские потери и болевые раздражители, что критич-
но для новорожденных с очень низкой массой тела. 
Одним из таких методов считается определение 
уровня фекального кальпротектина как потенциаль-
ного раннего биомаркера НЭК у недоношенных де-
тей. Однако его диагностическая ценность остается 
предметом научных дискуссий [11].

В последние два десятилетия микробиом кишеч-
ника стал объектом интенсивного изучения благо-
даря его ключевой роли в поддержании здоровья 
и ассоциации с различными патологиями, такими 
как сахарный диабет, астма, воспалительные забо-
левания кишечника, включая НЭК [12]. Пониженная 
частота воспалительных заболеваний у людей с вы-
соким содержанием бактерий-продуцентов КЦЖК 
и, соответственно, с более высокими концентрация-
ми КЦЖК стимулировала активное развитие иссле-
дований в этой области [13]. В то время как анализ 
состава микробиоты кишечника требует применения 
дорогостоящих и затратных по времени исполнения 
методов, таких как секвенирование 16S рРНК, кото-
рое предоставляет большой массив данных, слож-
ный для интерпретации врачом-клиницистом, ко-
личественный анализ метаболической активности 
микроорганизмов по уровням КЦЖК в кале мето-
дом газовой хроматографии с масс-спектрометрией 
(ГХ-МС) заслуживает особого внимания [14, 15]. 
Этот метод является быстрым, точным и неинва-
зивным, что делает его оптимальным для исполь-
зования в отделениях реанимации и интенсивной 
терапии новорожденных (ОРИТН), особенно у глу-
боко недоношенных детей с высоким риском раз-
вития НЭК.

Целью данного обзора является обобщение и ана-
лиз современных данных о патогенетической роли 
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КЦЖК, ключевых метаболитов микробиоты ки-
шечника, в развитии НЭК у глубоко недоношен-
ных новорожденных (менее 32 недель гестации). 
Это направление представляется перспектив-
ным как для понимания патогенеза заболевания, 
так и для разработки новых диагностических и про-
филактических стратегий.

МИКРОБИОТА КИШЕЧНИКА В ПАТОГЕНЕЗЕ НЭК
Бактериальное сообщество желудочно-кишечного 
тракта представляет собой огромную популяцию 
микроорганизмов (около 1012–1014 клеток), которые 
относятся к 100–1000 видов. Это экосистема, кото-
рую часто называют «вторым геномом» или даже 
«вторым мозгом», из-за ее способности влиять 
на различные функции организма, высвобождая 
в кровоток тысячи веществ [14].

У новорожденного микробиом начинает форми-
роваться с самого рождения и зависит от множе-
ства факторов, таких как способ родоразрешения 
(естественные роды или кесарево сечение), режим 
питания (грудное или искусственное вскармлива-
ние) и окружающая среда [16]. Поначалу состав 
микробиоты новорожденного очень пластичен и из-
менчив, но стабилизируется в раннем детстве [17]. 
Длительное пребывание в медицинских учрежде-
ниях, антибактериальная терапия, питание через 
оро- или назогастральный зонд, отсутствие кон-
такта с материнской микрофлорой, а также недо-
статок материнского молока являются ключевыми 
факторами, влияющими на особенности формирова-
ния микробиоты кишечника у недоношенных детей, 
микробный профиль которой отличается от профи-
ля у доношенных новорожденных [18]. Считается, 
что колонизация желудочно-кишечного тракта 
младенцев в условиях отделения реанимации и ин-
тенсивной терапии (ОРИТН) приводит к снижению 
альфаразнообразия микробного сообщества с одно-
временным обогащением генами, отвечающими 
за устойчивость к антибиотикам [19–22]. 

Кишечник глубоко недоношенных новорож-
денных преимущественно колонизируется услов-
но патогенными факультативными анаэробами, 
такими как представители типов Proteobacteria 
и Firmicutes. Это происходит одновременно со сни-
жением численности комменсальных бактерий, на-
пример, типов Actinobacteria и Bacteroidota [23, 24]. 
В частности, бактерии семейства Enterobacteriaceae, 
к которому относятся представители Enterobacter, 
Escherichia и Klebsiella (тип Proteobacteria), обла-
дают значительно более высокой относительной 
численностью. Напротив, полезные бактерии рода 
Bifidobacterium (тип Actinobacteria) представлены 
в значительно меньшем объеме, чем у доношенных 

детей [23, 24]. Интересно, что при развитии микроб-
ного сообщества у глубоко недоношенных новорож-
денных часто происходит переход от доминирова-
ния одного рода бактерий к другому, что отражает 
большую динамичность и неустойчивость микробио-
ты у таких младенцев [22, 25, 26]. Подобные изме-
нения могут быть связаны с воздействием внешних 
факторов, например, с использованием антибиоти-
ков и особенностями питания [22]. Высокая инди-
видуальная вариабельность микробиома кишечника 
недоношенных новорожденных, а также малые чис-
ленности исследуемых групп затрудняют выделе-
ние бактерий, ответственных за развитие НЭК [26].

Ранее обнаружили снижение разнообразия ки-
шечного микробиома у глубоко недоношенных де-
тей, а при этом показано, что уменьшение этого 
разнообразия еще более выражено у младенцев, 
у которых развивается НЭК [27]. Следует отметить, 
что снижение количества комменсальных бактерий, 
в частности, представителей рода Bifidobacterium 
(тип Actinobacteria) и Bacteroides (тип Bacteroidota), 
и увеличение численности условно-патогенных ми-
кроорганизмов типа Proteobacteria (в особенности, 
семейства Enterobacteriaceae) и Firmicutes (роды 
Staphylococcus, Clostridium, Streptococcus и Blautia) 
становится все более выраженным [27–31]. Связь 
класса Gammaproteobacteria, включающего семей-
ство Enterobacteriaceae, с развитием НЭК показана 
в одном из крупнейших продольных исследований 
среди недоношенных детей с массой тела менее 
1500 г при рождении [31]. Повышение численно-
сти потенциально патогенных Gammaproteobacteria 
при  одновременном снижении численности 
Bacteroides еще до манифестации НЭК подтверж-
дено и в других работах [27, 32, 33].

Группа под руководством Stewart C.J. и со-
авт. (2016) предложила рассматривать в аспекте 
патогенеза НЭК у глубоко недоношенных не от-
дельные микроорганизмы как потенциальные па-
тогены, а нестабильность формирующегося ки-
шечного микробиома [25]. Эта нестабильность 
проявляется в частых переходах между домини-
рующими бактериальными сообществами. В про-
дольном исследовании микробиома кишечника 35 
глубоко недоношенных новорожденных НЭК на-
блюдался исключительно при доминировании 
бактерий родов Klebsiella и Escherichia (семей-
ство Enterobacteriaceae, тип Proteobacteria), либо 
Staphylococcus и Enterococcus (тип Firmicutes). 
При этом НЭК не возникал при большем разнообра-
зии бактериального сообщества с высоким относи-
тельным содержанием Bifidobacterium. Эти данные 
свидетельствуют о том, что в патогенезе НЭК сле-
дует рассматривать не только и не столько фактор 
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колонизации кишечника тем или иным видом пато-
генных бактерий, а более широко – фактор стабиль-
ности и разнообразия микробиома, что подчеркива-
ет многофакторную природу данной патологии [25].

Функциональная незрелость кишечника у глу-
боко недоношенных новорожденных проявляется 
в ограниченной способности эпителиальных клеток 
к полной дифференцировке и снижении количе-
ства клеток Панета, что сопровождается уменьше-
нием синтеза защитной слизи [34]. Недостаточное 
образование кишечной слизи, незрелый иммуни-
тет кишечника, снижение эндогенной продукции 
антимикробных факторов могут привести к усиле-
нию бактериальной адгезии и повышенному воз-
действию бактериального эндотоксина (липопо-
лисахарида, ЛПС) грамотрицательных бактерий 
(в частности, превалирующего у таких детей типа 
Proteobacteria), стимулирующему Toll-4-рецепторы 
(TLR4) эпителиальных клеток, приводя к их апоп-
тозу и нарушению целостности эпителиального ба-
рьера кишечника, а также вызывая выраженную 
воспалительную реакцию, опосредованную TNFα, 
IL-1β и другими провоспалительными цитокина-
ми [35]. В конечном итоге, эти процессы повышают 
риск развития неонатального сепсиса или локально-
го воспаления (рис. 1) [6, 36, 37].

При НЭК патоген может и не быть идентифи-
цирован [25]. Диагностика основана на клинических 
и рентгенологических признаках и не требует вы-
деления конкретного микроорганизма. Тем не менее 
изучение роли нарушений микробиома в патогенезе 
НЭК необходимо для того, чтобы профилирование 
микробиома стало частью клинической практики. 
Раннее выявление избыточного роста бактерий, 
особенно видов, связанных с НЭК и поздним нача-
лом сепсиса, а также анализ временных изменений 
структуры микробиома могут быть перспективными 
подходами к лечению глубоко недоношенных детей 
[36]. Особое значение придается микробиологическо-
му исследованию отделяемого со слизистой верхних 
дыхательных путей и ЖКТ в первые сутки жиз-
ни как фактору, ассоциированному с реализацией 
раннего неонатального сепсиса и НЭК у глубоко не-
доношенных детей [38]. Однако интеграция инфор-
мации о микробиоте кишечника и ее изменениях 
в рутинную клиническую практику сталкивается 
с рядом препятствий, включая значительное раз-
нообразие и сложность состава микробиоты, а так-
же отсутствие стандартных методов и пайплайнов 
для анализа. Эти факторы значительно усложня-
ют интерпретацию полученных данных и требуют 
дальнейших исследований.

Глубоко недоношенный 
новорожденный

Факторы риска НЭК

•�незрелость кишечного барьера;

•�особая микробная среда ОРИТН;

•�антибактериальная терапия;

•�кормление через назогастральный  
зонд;

•�ограничение/отсутствие  
грудного молока

Выраженный дисбиоз кишечника

•�условно-патогенные Proteobacteria  
и Firmicutes;

•�индивидуальная вариабельность;

•�нестабильность;

•�комменсалы Actinobacteria и Bacteroidota;

•�α-разнообразие

НЭК

1. �Высокий провоспалительный фон: 
нейтрофилы, М2, Th1, Th17 (IL-1, IL-6, IL-17, 
TNF-α, IFNγ)

2. �Нарушение целостности кишечного барьера: 
белки плотных контактов (СLDN, OCLN), 
муцины (MUC)

3. �Транслокация бактерий, их метаболитов и 
АММП (LPS, Flg, PGN и др.) в кровоток

4. Системное воспаление

АММП

муцин

Lamina propria

Рис. 1. Схема патогенеза НЭК у глубоко недоношенных новорожденных
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Культуральные методы традиционно использу-
ются для изучения микробиоты через выращива-
ние микроорганизмов на различных питательных 
средах. Такие методы позволяют детально изучать 
живые культуры бактерий и проводить функци-
ональные тесты, например, на чувствительность 
к антибиотикам. Однако они имеют серьезные огра-
ничения: только небольшая часть микроорганизмов 
кишечника может культивироваться в лаборатор-
ных условиях, и процесс культивирования может 
занимать значительное время. В результате куль-
туральные методы ограниченно отражают видовой 
состав микробиоты и предоставляют качественные, 
а не количественные данные [39].

Для амплификации и выявления определенных 
участков ДНК используется полимеразная цепная 
реакция (ПЦР) – мощный высокочувствительный 
молекулярный инструмент, позволяющий быстро 
обнаруживать присутствие определенных микро-
организмов. Однако ПЦР преимущественно исполь-
зуется для поиска известных видов и не позволяет 
судить о видовом разнообразии и богатстве состава 
микробиоты [40]. 

Метод секвенирования нового поколения (NGS) 
16S рРНК приобрел широкую популярность для из-
учения микробиоты благодаря возможности анали-
за генетического материала как культивируемых, 
так и некультивируемых микроорганизмов [40]. Этот 
метод позволяет идентифицировать видовую при-
надлежность бактерий, оценивать их относитель-
ное количество и потенциальную метаболическую 
активность. Однако NGS 16S рРНК имеет свои не-
достатки, такие как сложность в дифференциации 
близкородственных видов, отсутствие детальной 
информации о функциональных аспектах бактери-
альных сообществ, высокая стоимость и временные 
затраты на анализ, а также сложность обработки 
и интерпретации данных (табл. 1) [41]. 

Даже зная состав микробного сообщества и его 
генетический профиль, 16S рРНК-секвенирование 

не позволяет полностью раскрыть функциональную 
роль каждого вида в микробиоме. Микроорганизмы 
способны адаптироваться, изменяя уровень синте-
за ферментов и их активность, что позволяет им 
влиять на окружающую среду, членов сообщества, 
клетки и сам организм хозяина. Для решения этих 
задач разрабатываются мультиомиксные подходы, 
объединяющие метагеномику, метатранскриптоми-
ку, протеомику и метаболомику. Они предоставляют 
более полную информацию о выраженности дисбак-
териоза кишечника, уровнях взаимодействия и ме-
таболической активности микробного сообщества, 
что может быть особенно полезно в клинических 
исследованиях и при лечении сложных заболева-
ний, связанных с изменениями микробиома [42].

КОРОТКОЦЕПОЧЕЧНЫЕ ЖИРНЫЕ КИСЛОТЫ – 
КЛЮЧЕВЫЕ МЕТАБОЛИТЫ КИШЕЧНОЙ МИКРОБИОТЫ
Бактерии способны синтезировать около 15000 
молекул, уникальных для организма человека, 
к которым иммунные клетки и клетки кишечни-
ка экспрессируют специфические рецепторы [43]. 
Бактериальные метаболиты могут проникать через 
кишечный барьер и оказывать системное воздей-
ствие [44, 45]. Среди таких биоактивных соединений 
микробного происхождения выделяются антими-
кробные пептиды, конъюгированная линолевая кис-
лота, гамма-аминомасляная кислота и КЦЖК [45]. 

В организме человека эти соединения выполня-
ют множество важных функций, включая ингиби-
рование синтеза провоспалительных цитокинов, 
поддержание целостности эпителиального барьера 
кишечника, а также стимуляцию пролиферации 
и дифференцировки колоноцитов [45]. КЦЖК явля-
ются универсальными энергетическими субстрата-
ми для различных клеток, причем масляная кислота 
выступает в качестве предпочтительного источника 
энергии для колоноцитов, обеспечивая 60–70% их 
энергетических потребностей [46]. Как конечные 
продукты бактериального метаболизма, КЦЖК 

Таблица 1. Сравнение основных методов исследования состава микробиоты: преимущества и ограничения

Метод Преимущества Ограничения

Культуральные 
методы

Позволяют получать живые культуры; возможно 
проведение функциональных тестов, включая 
тесты на чувствительность к антибиотикам

Ограниченное число культивируемых 
видов; трудоемкость и длительность; дан-

ные в основном качественные [39]

ПЦР Высокая чувствительность; быстрое выявление 
известных микроорганизмов

Определяет только заранее известные 
микроорганизмы; не позволяет оценить 

общее видовое разнообразие [40]

Секвенирование 16S 
рРНК

Анализ культивируемых и некультивируемых 
видов; оценка относительного количества; про-

филь микробиоты

Не различает близкородственные виды; 
ограниченная функциональная инфор-
мация; высокая стоимость; сложности 

интерпретации [40, 41]
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представляют собой более информативный индика-
тор состояния кишечника, чем отдельные микроор-
ганизмы или их комбинации. Раскрытие механиз-
мов действия этих метаболитов является ключевым 
для идентификации потенциальных биомаркеров 
НЭК и разработки новых терапевтических мише-
ней.

Только 5% КЦЖК, продуцируемых в кишечнике, 
обнаруживаются в фекалиях, поскольку основная 
часть поглощается колоноцитами [47]. В среднем 
уровни КЦЖК в фекалиях составляют единицы–
десятки ммоль/кг [48]. Лишь небольшая часть (около 
1%) КЦЖК в виде солей всасывается в воротную 
вену [49]. Уксусная кислота (ацетат) является од-
ним из ключевых конечных продуктов гликоли-
за у множества комменсальных микроорганизмов, 
включая представителей Lactobacillus, Clostridium, 
Blautia (тип Firmicutes), Bacteroides и Prevotella 
(тип Bacteroidota), а также Bifidobacterium (тип 
Actinobacteria) [30]. Пропионовая кислота (про-
пионат) синтезируется ограниченным числом бак-
терий кишечника через метаболизм сукцината, 
акрилата и пропандиола. К этим микроорганиз-
мам относятся представители рода Clostridium, 
Veillonella (тип Firmicutes), Propionibacterium (тип 
Actinobacteria) и Bacteroides (тип Bacteroidota) [4]. 
Бактерии, производящие масляную кислоту (бути-
рат), в основном относятся к типу Firmicutes, вклю-
чая семейства Ruminococcaceae, Lachnospiraceae, 
Erysipelotrichaceae и Clostridiaceae [50]. Особенно 
много продуцентов бутирата у  видов класса 
Clostridia [51]. Кроме того, в кишечнике присут-
ствуют бактерии, которые используют конечные 
продукты метаболизма других микроорганизмов 
для синтеза масляной кислоты, что предотвращает 
накопление лактата и ацетата [5]. Например, ацетат, 
производимый Bifidobacterium, преобразуется в бу-
тират бактериями класса Clostridia [52]. 

Уксусная кислота служит субстратом для биосин-
теза жирных кислот, участвует в цикле Кребса [53] 
и обладает противовоспалительными свойствами 
[54]. Пропионат способствует улучшению барьерной 
функции и целостности кишечного эпителия, а так-
же играет важную роль в регуляции гомеостаза 
глюкозы и липидов в печени [55]. Масляная кислота 
(бутират) является ключевым источником энергии 
для эпителиальных и иммунных клеток толстого 
кишечника [56, 57], повышает экспрессию белков 
плотных контактов, способствуя поддержанию це-
лостности кишечного барьера [56], и обладает вы-
раженным противовоспалительным эффектом [58]. 

Для определения взаимосвязи между микробио-
той кишечника и состоянием здоровья необходимо 
обладать надежными количественными методами 

определения концентраций метаболитов в различ-
ных биологических матрицах, таких как плазма 
и сыворотка крови, моча, а также фекалии. В со-
временных исследованиях используются подходы, 
основанные на технике капиллярного электрофо-
реза (КЭ), ядерного магнитного резонанса (ЯМР), 
жидкостной и газовой хроматографии, соединенных 
с масс-спектрометрией (ЖХ-МС и ГХ-МС) [59–64]. 
Методы масс-спектрометрии считаются наиболее 
предпочтительными для количественного анализа 
низкомолекулярных соединений благодаря их вы-
сокой чувствительности и специфичности [59, 60, 
63–66]. Однако применение этих методов к ана-
лизу КЦЖК в фекалиях сопряжено с определен-
ными трудностями. Во-первых, высокий уровень 
содержания липидов в фекалиях снижает эффек-
тивность экстракции водорастворимых соединений. 
Во-вторых, летучие и частично гидрофильные свой-
ства КЦЖК значительно усложняют их анализ ме-
тодом ЖХ-МС, который требует многоступенчатой 
пробоподготовки, включая этапы экстракции и де-
риватизации [67]. Это не только усложняет и уд-
линяет анализ, но и повышает техническую вариа-
бельность [68]. ГХ-МС является надежным методом 
количественного определения низкомолекулярных 
соединений [64, 69, 70]. Благодаря летучей приро-
де КЦЖК их анализ методом ГХ-МС может быть 
выполнен без дериватизации, если используются 
хроматографические колонки с высокополярными 
фазами и особые условия жидкостно-жидкостной 
экстракции [59, 69]. 

Что касается анализа фекальных образцов ново-
рожденных, то точность и воспроизводимость ко-
личественных исследований могут быть снижены 
по сравнению с анализом образцов, полученных 
от взрослых. Это связано с высокой вариабельно-
стью содержания воды, сложностью нормирования 
массы образца, использованием подгузников и сти-
муляторов дефекации в ОРИТН, а также с ограни-
ченным объемом доступного биологического мате-
риала.

Сравнительная характеристика наиболее часто 
используемых аналитических методов для опре-
деления КЦЖК в фекалиях приведена в табл. 2. 
Показаны основные подходы, применяемые в кли-
нических и исследовательских условиях, с акцентом 
на их применимость к анализу фекальных образцов 
новорожденных. Особое внимание уделено таким 
параметрам, как чувствительность, специфичность, 
требования к пробоподготовке и потенциальные 
ограничения каждого метода. Учитывая летучую 
природу КЦЖК, ГХ–МС при правильной настройке 
может представлять собой оптимальный выбор, не-
смотря на требования к подготовке образца.
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Таблица 2. Сравнительная характеристика методов количественного определения КЦЖК в фекалиях

Метод анализа Принцип Преимущества Ограничения

 Капиллярный 
электрофорез 

[61]

Разделение ионов 
в электрическом 
поле в капилляре

- Простота метода
- Низкий расход реагентов

- Возможность одновременного анали-
за нескольких соединений

- Низкая чувствительность
- Требуется высокая степень очистки 

образца

ЯМР-спектро
скопия [62]

Регистрирует 
магнитные свойства 

ядер атомов

- Неразрушающий метод
- Одновременный анализ многих 

метаболитов
- Не требует дериватизации

- Низкая чувствительность
- Высокая стоимость оборудования

ЖХ–МС  
[60, 63, 65, 66] 

Разделение соеди-
нений в жидкой 
фазе с последу-
ющим ионным 

анализом

- Высокая чувствительность  
и специфичность

- Широкий диапазон определяемых 
КЦЖК

- Возможность изотопного  
нормирования

- Многоступенчатая пробоподготовка
- Необходима дериватизация и/или 

использование внутренних стандартов
- Трудности с летучими соединениями

ГХ–МС  
[59, 62, 64, 69, 

71]

Разделение летучих 
соединений в газо-
вой фазе и их масс-
спектрометрический 

анализ 

- Высокая точность и чувствитель-
ность

- Подходит для анализа летучих 
КЦЖК

- Возможность анализа без деривати-
зации (при оптимальных условиях)

- Длительная пробоподготовка
- Необходима дериватизация 
для нелетучих соединений

- Варьирующая воспроизводимость 
при анализе фекалий новорожденных

кина IL-18, который не только способствует продук-
ции муцина, но и активирует синтез антимикробных 
пептидов, таких как дефензины и кателицидины, 
активные против широкого спектра патогенов [77]. 
Одновременно бактериальный метаболит подавляет 
индуцированную IL-1 экспрессию провоспалитель-
ных генов, включая IL-6, CX3СL1 и CXCL5, что по-
зволяет контролировать состав микробиоты и пре-
дотвращать развитие дисбиоза [78, 79]. 

Будучи лигандами рецепторов, связанных 
с G-белком (GPR43/FFAR2, GPR41/FFAR3), КЦЖК 
влияют на активацию и дифференцировку клеток 
как врожденного, так и адаптивного иммуните-
та [58, 80]. Бутират направляет дифференцировку 
макрофагов к M2-иммуносупрессивному фенотипу, 
который участвует в подавлении воспалительных 
процессов и поддержании тканевого гомеостаза [81]. 
Уксусная кислота снижает воспаление кишечника 
за счет активации рецептора GPR43/FFAR2 грану-
лоцитов, способствуя уменьшению их воспалитель-
ной активности [82]. 

КЦЖК влияют на уровень экспрессии генов 
в иммунных клетках посредством эпигенетиче-
ских механизмов. Например, бутират и пропионат 
ингибируют гистон-деацетилазы (HDAC), что спо-
собствует деконденсации хроматина и активации 
транскрипции генов, ответственных за иммуноре-
гуляцию [72, 83]. Бутират направляет дифферен-
цировку Т-клеток в Foxp3+ регуляторные Т-клетки 
(Treg) через ингибирование HDAC [84]. Treg играют 
центральную роль в подавлении чрезмерного им-
мунного ответа на комменсальные микроорганизмы 
и в предотвращении развития хронического вос-

МЕХАНИЗМЫ ДЕЙСТВИЯ КЦЖК
Ключевой функцией КЦЖК является обеспечение 
энергией клеток кишечника, включая колоноциты 
и клетки иммунной системы, что способствует акти-
вации их метаболизма, пролиферации и дифферен-
цировки [72, 73]. Масляная кислота (бутират), один 
из ключевых представителей КЦЖК, устраняет 
дефицит митохондриального дыхания и предотвра-
щает аутофагию в безмикробных колоноцитах, ис-
пытывающих дефицит энергии [74]. 

КЦЖК играют решающую роль в поддержании 
целостности кишечного барьера, препятствуя раз-
витию синдрома повышенной кишечной проницае-
мости, известного как «дырявый кишечник». Этот 
синдром облегчает бактериальную транслокацию, 
усиливает воспалительные процессы и может стать 
причиной системных осложнений [75]. Добавление 
бутирата к эпителиальным клеткам нейроглиомы 
(H4) и включение его в рацион питания мышей 
увеличивает локальное потребление кислорода, 
что стабилизирует фактор, индуцируемый гипокси-
ей (HIF). В результате активируется транскрипция 
генов, участвующих в синтезе ключевых компонен-
тов плотных контактов, таких как муцин (MUC20), 
клаудины (CLDN2, 4, 11 и 15) и окклюдин (OCLN) 
[76]. Эти изменения способствуют укреплению меж-
клеточных контактов и предотвращают проникнове-
ние патогенов через кишечный барьер. 

КЦЖК играют ключевую роль в регуляции им-
мунного ответа в кишечнике, что делает их важны-
ми медиаторами взаимодействия между микробио-
той и иммунной системой [45]. Бутират стимулирует 
синтез колоноцитами противовоспалительного цито-
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паления. Более того, активация рецепторов GPR43 
и GPR109A на дендритных клетках под действием 
бутирата способствует дифференцировке Treg че-
рез индукцию синтеза противовоспалительного ци-
токина IL-10 [85]. 

КЦЖК также влияют на функцию В-клеток. 
Исследования Kim M. и соавт. (2016) продемон-
стрировали, что КЦЖК, особенно ацетат, напрямую 
стимулируют дифференцировку В-клеток в IgA-
продуцирующие клетки [86]. Секреция иммуногло-
булина А (IgA) обеспечивает защиту слизистой обо-
лочки кишечника, предотвращая избыточный рост 
патогенных микроорганизмов и защищая коммен-
сальные [86].

КЦЖК ингибируют рост и колонизацию пато-
генной микрофлоры кишечника, включая микро-
организмы семейства Enterobacteriaceae, такие 
как E. coli, K. pneumoniae и P. aeruginosa [87]. Они 
изменяют внутриклеточный уровень pH у патоге-
нов, что создает неблагоприятные условия для их 
выживания. Это происходит благодаря способно-
сти КЦЖК проникать в неионизированной форме 
внутрь бактериальной клетки, где они диссоцииру-
ют, снижая внутриклеточный pH и нарушая метабо-
лические процессы в клетках патогенов [88].

В колоноцитах бутират активирует рецептор-гам-
ма, активируемый пролифераторами пероксисом-

гамма (PPARγ), который играет важную роль в ре-
гуляции метаболизма жирных кислот. Активация 
PPARγ индуцирует β-окисление и увеличивает по-
требление кислорода колоноцитами, что снижает 
доступность кислорода в просвете кишечника. Такое 
изменение кислородной среды ограничивает рост 
аэробных патогенных микроорганизмов, особенно 
входящих в семейство Enterobacteriaceae, которые 
нуждаются в кислороде для пролиферации [89]. 

Таким образом, КЦЖК, особенно масляная кис-
лота, выступают не только универсальными энер-
гетическими субстратами для клеток кишечника, 
но и мощными регуляторами местного иммуните-
та, барьерной функции и микробного гомеостаза 
(рис. 2). Эффекты КЦЖК особенно важны для глу-
боко недоношенных детей, у которых из-за не-
зрелости кишечного барьера и иммунной системы 
повышен риск колонизации патогенными микроор-
ганизмами. Это делает данные метаболиты ключе-
выми компонентами в предотвращении и лечении 
таких состояний, как НЭК.

КЦЖК В ПАТОГЕНЕЗЕ НЭК
Дисбиоз кишечника признан одним из ключевых 
факторов патогенеза НЭК [90]. Многочисленные ис-
следования, проведенные на модельных организмах, 
подтверждают значимость микробиоты и ее мета-

ОГМ

Большинство  
комменсалов

Clostridium, 
Veillonella, 
Propionibacterium, 
Bacteroides

Ruminococcaceae, 
Lachnospiraceae, 
Erysipelotrichaceae, 
Clostridiaceae

Уксусная кислота

Пропионовая кислота

Масляная кислота

Clostridia

GPR41, 
GPR43, 
GPR109A

Поддержание целостности 
эпителиального барьера: 
- �синтез MUC20, СLDN, 

OCLN, IL-18;
- источник энергии

Формирование полезной 
микрофлоры

Иммуномодулирующее действие:
IL-1β, TNF-α, IL-6, IL-8, 
CX3CL1 и CXCL5 
IL-10, TGF-β, IgA 

Рис. 2. Защитные 
механизмы КЦЖК 
в кишечнике ново-
рожденных
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Таблица 3. Особенности микробиома кишечника и КЦЖК при НЭК у недоношенных новорожденных 

Ссылка Клинические 
группы

Гестаци-
онный  

возраст, 
недели

Сутки 
реализации 

НЭК

Преобладающие  
микроорганизмы, тип и доля  

(%, контроль vs НЭК)

КЦЖК, направление 
изменения и кратность

Liu X.C. 
и соавт., 
2022 [30]

НЭК за 7.0 ± 7.6 
дней (n = 17) 

и при манифе-
стации (n = 12)

30.5 ± 2.1 30.2 ± 15.9 Proteobacteria ↑ (с 40 до 53%) 
Firmicutes ↓ (с 55 до 35%) 

Actinobacteriota ↑ (с 5 до 10%) 
Bacteroidota ↑ (с 0.5 до 4%)

*Уксусная 1.8↓ 
**Пропионовая 1.2↓ 

**Масляная 1.1↓ 
**Изовалериановая 2.3↓ 

*КЦЖК 2.4↓Контроль 
(n = 17) 30.5 ± 1.9 -

He Y. 
и соавт., 
2021 [15]

НЭК  
(n = 81)

31.0 
(29.4–33.7) 15 (12–19) ***Proteobacteria ↑ (c 27 до 55%) 

***Firmicutes ↓ (с 57 до 37%) 
***Actinobacteriota ↓ (с 4 до 1%) 
***Bacteroidota ↓ (с 10 до 3%)

**Масляная 1.4↓
Контроль 
(n = 81)

31.1 
(29.3–33.2) -

Xiong J., 
2022 [98]

НЭК  
(n = 22) 35.5 ± 2.2 11.6 

(6.8–16.0) Proteobacteria ↓ (с 50 до 37%) 
Firmicutes ↑ (с 45 до 57%) 

*Actinobacteriota↑ (с 3 до 5%) 
**Bacteroidota ↓ (с 4 до 1%)

**Уксусная 1.5↓ 
**Пропионовая 2.3↓ 

**Масляная 2.7↓ 
**Изовалериановая 2.0↓ 

**Капроновая 2.7↑ 
**КЦЖК 1.6↓

FPIAP  
(n = 21) 36.5 ± 1.4 15.2 

(11.0–22.0)

Casaburi G. 
и соавт., 

2023 [100]

НЭК  
(n = 3) ~29 -

Proteobacteria ↑ *Муравьиная 6.7↑
Контроль 
(n = 10) ~29 -

НЭК, лечение  
(n = 3) ~29

через 3 
недели 
лечения

Proteobacteria ↓ 
Bacteroidetes ↑  

по сравнению с дебютом НЭК
-

Huang H., 
2022 [99]

НЭК (n = 9) 31.6  
(28.35–37.45)

Proteobacteria ↑ (с 30 до 65%) 
Firmicutes ↓ (с 65 до 30%) 

Actinobacteriota ↓ (с 5 до 1%) 
Bacteroidota ↑ (с 0 до 5%)

Не проводилось
Контроль 
(n = 10)

37.75 
(32.03–39.05)

Pourcyrous 
M. и соавт., 
2014 [101]

Смесь (n = 9) 27 -
Не проводилось

**КЦЖК 1.9↑
**Ацетат 3.1↑

**Пропионат 3.4↑
Сцеженное 

молоко (n = 10) 27 -

Примечание. Жирным выделены изменения более чем в 2 раза уровней фекальных КЦЖК в группе НЭК по срав-
нению с группой контроля. * – p < 0.05, ** – p < 0.01, *** – p < 0.001 – при парном сравнении группы НЭК 
и контроля или группы сравнения. 

болитов в развитии данного заболевания [91, 92]. 
В частности, колонизация безмикробных мышей 
бактериями, выделенными из фекалий пациентов 
с НЭК, провоцирует НЭК-подобные повреждения 
кишечника [15]. 

Дисбиоз кишечника приводит к нарушению син-
теза КЦЖК, что особенно актуально для глубоко 
недоношенных детей [93], минимальный уровень 
КЦЖК при рождении у которых постепенно увели-
чивается с постконцептуальным возрастом при от-
сутствии НЭК [94–97]. Однако метаболизм КЦЖК 
у глубоко недоношенных новорожденных остается 
малоизученным.

Клинические исследования микробиоты кишеч-
ника и продуцируемых КЦЖК у глубоко недоно-
шенных новорожденных с НЭК остаются весьма 

немногочисленными. В  работах 2021–2023  гг. 
(табл. 3) [15, 30, 98–100] результаты 16S рРНК-
секвенирования подтвердили данные о доминиро-
вании в микробиоте незрелого кишечника протео-
бактерий, ассоциируемых с развитием НЭК [27–29, 
31]. Одновременно выявлено выраженное снижение 
численности представителей типа Firmicutes, вклю-
чающего основные штаммы-продуценты бутирата, 
еще до манифестации клинических симптомов за-
болевания [30].

У новорожденных с НЭК обнаружено достовер-
ное снижение уровней КЦЖК (p <0.05), особенно 
муравьиной, пропионовой, масляной, изовалериано-
вой и капроновой [15, 30, 98, 100]. Примечательно, 
что у глубоко недоношенных детей, получавших 
сцеженное грудное молоко, концентрация КЦЖК 
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в кале оказалась достоверно выше, чем у детей 
на искусственном вскармливании [101]. Хотя пря-
мая причинно-следственная связь между уровнем 
КЦЖК и развитием НЭК требует дальнейшего из-
учения, полученные данные указывают на потен-
циальную протективную роль этих метаболитов 
в поддержании целостности кишечного барьера 
и модуляции воспалительного ответа.

Однако результаты исследований выявляют зна-
чительную вариабельность в абсолютных концен-
трациях КЦЖК. Например, в работе Liu X.C. и со-
авт. (2022) средний уровень бутирата в кале детей 
контрольной группы составил 41 мкг/г [30], в иссле-
довании He Y. и соавт. (2021) этот показатель до-
стигал 225 мкг/г [15]. Подобные расхождения могут 
быть обусловлены различиями в применяемых ана-
литических методах, характеристиках когорт и про-
токолах сбора и хранения биоматериала.

Обзоры Alsharairi N.A. и соавт. (2023), а также 
Cifuentes M.P. и соавт. (2024) указывают, что роль 
бутирата в развитии неонатального НЭК остается 
неоднозначной [93, 102]. Однако детальный анализ 
клинических работ (табл. 3) демонстрирует выра-
женное снижение уровня бутирата в кале глубоко 
недоношенных новорожденных за неделю до появ-
ления клинических симптомов НЭК и при дебюте 
заболевания, что подтверждает его потенциальную 
диагностическую ценность [15, 30]. У взрослых мас-
ляная кислота также ассоциируется с уменьшени-
ем риска развития воспалительных заболеваний 
кишечника, таких как язвенный колит и болезнь 
Крона [103, 104]. Экспериментальные исследования 
подчеркивают, что бутират способствует укрепле-
нию барьерной функции эпителиальных клеток 
кишечника и снижает воспалительные реакции им-
мунных клеток.

В то же время в ряде модельных экспериментов 
была выявлена негативная роль бутирата при НЭК 
[92, 105–108]. Неполное переваривание углеводов 
в тонком кишечнике приводит к их ферментации 
в толстом кишечнике с образованием КЦЖК, лак-
тата и газов, таких как углекислый газ, метан и во-
дород [109]. У недоношенных поросят, моделирую-
щих НЭК, избыточное образование бактериальных 
метаболитов вследствие высокого уровня неперева-
ренной лактозы может запускать воспалительную 
реакцию [108]. 

Противоречивые эффекты бутирата могут быть 
объяснены его дозозависимым действием, впервые 
описанным Lin и соавт. (2002) [106]. Более поздние 
исследования подтвердили, что высокие концен-
трации бутирата (более 16 мМ) стимулируют син-
тез провоспалительного цитокина IL-6, в то время 
как низкие дозы оказывают защитное действие, 

снижая экспрессию IL-6 и NF-kB, усиливая син-
тез белка плотных контактов клаудина-7 [57, 110]. 
На модели НЭК у новорожденных мышей показа-
но, что существует оптимальный уровень масляной 
кислоты, при котором риск развития НЭК миними-
зируется [111].

Трудности сопоставления данных, полученных 
в разных исследованиях, обусловлены разнообра-
зием применяемых методов анализа, небольшим 
размером выборки глубоко недоношенных ново-
рожденных и вариативностью экспериментальных 
моделей НЭК. Проведение многоцентровых рандо-
мизированных исследований с унифицированным 
подходом к сбору биоматериала и анализу микро-
биологических и метаболических данных может по-
мочь в уточнении роли КЦЖК в патогенезе НЭК, 
а также в определении оптимальных терапевтиче-
ских доз этих метаболитов. Вместе с тем, исполь-
зование ГХ-МС для определения концентраций 
КЦЖК в фекалиях представляет собой точный, не-
инвазивный, быстрый и экономически эффективный 
метод, который можно легко внедрить в рутинную 
неонатальную практику для ранней диагностики 
и мониторинга метаболической активности кишеч-
ной микрофлоры у глубоко недоношенных новорож-
денных [102].

ЗАКЛЮЧЕНИЕ
Формирование симбиотической экосистемы кишеч-
ника является ключевым процессом, необходимым 
для успешной адаптации новорожденного ребенка. 
Малый гестационный возраст при рождении, врож-
денная физиологическая незрелость кишечника, 
высокая частота родоразрешения путем кесарева 
сечения, длительная госпитализация с пребыванием 
в микроокружении отделения интенсивной терапии, 
антибактериальная терапия, отсутствие контакта 
с материнской микрофлорой, а также отсутствие 
или недостаток поступления материнского молока 
являются ключевыми факторами, способствующими 
формированию дисбиотической микробной сигнату-
ры. Микробиом кишечника глубоко недоношенных 
новорожденных характеризуется преобладанием 
грамотрицательных бактерий типа Proteobacteria, 
снижением микробного разнообразия и общей не-
стабильностью. Исследования связывают подобные 
изменения с повышенным риском жизнеугрожаю-
щих состояний, таких как НЭК.

Современные данные подчеркивают важность 
метаболитов микробиоты, таких как КЦЖК, в под-
держании метаболического и иммунного гомеостаза 
кишечника. Однако большая часть данных получена 
с использованием мышиных моделей и клеточных 
линий. Кроме того, все больше данных свидетель-
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ствует о том, что метаболизм КЦЖК находится 
в динамическом равновесии, и отклонения в любую 
сторону – как избыточно высокие, так и низкие 
уровни – могут негативно сказываться на здоровье. 

Для более глубокого понимания роли КЦЖК 
и микробиома в патогенезе НЭК необходимы мно-
гоцентровые исследования, способные охватить 
достаточное количество случаев редких заболева-
ний. Интеграция мультиомиксных подходов, таких 
как метагеномное секвенирование, транскриптоми-
ка и таргетная метаболомика, необходима для опре-
деления специфических микробных сообществ 
и метаболических биомаркеров, включая КЦЖК. 

Разработка быстрых и неинвазивных методов функ-
ционального профилирования микробиома для при-
менения в клинических условиях позволит создать 
систему оценки риска развития НЭК у глубоко не-
доношенных новорожденных. Ассоциация микроб-
ных метаболитов с патологиями у новорожденных 
открывает возможности для создания комплексных 
про- и постбиотических формул. 

Исследование выполнено за счет гранта 
Российского научного фонда (№ 24-25-00068): 
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