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связи, которые обеспечивают стабильность про-
странственной структуры. Среди представителей 
этой группы первыми были обнаружены и опи-
саны антимикробные пептиды [8]. Первоначально 
считалось, что функции цистеин-богатых пептидов 
ограничены защитой от патогенов [4, 9], однако впо-
следствии показали, что функции, выполняемые 
цистеин-богатыми пептидами, гораздо шире и вклю-
чают регуляцию закладки устьиц, симбиоза, репро-
дуктивных процессов и стрессового ответа [10–12].

Цистеин-богатые пептиды EPF/EPFL были впер-
вые идентифицированы как ключевые регулято-
ры устьичного развития у Arabidopsis thaliana [10, 
13–15]. В дальнейшем установили, что эти пептиды 
участвуют в контроле активности апикальной по-
беговой меристемы, развитии соцветий и адаптации 
к стрессам. Несмотря на растущий объем экспери-
ментальных данных, до сих пор отсутствуют систе-
матизированные обзоры, суммирующие информа-
цию об этом семействе. В представленной работе 
обобщены данные о пептидах EPF/EPFL, включая 
их структуру, эволюционное разнообразие и биоло-
гические функции.
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РЕФЕРАТ Цистеин-богатые пептиды семейства EPF/EPFL (epidermal patterning factor/epidermal 
patterning factor-like) распространены у растений, начиная со мхов и заканчивая покрытосеменными. 
EPF/EPFL играют важную роль в морфогенезе – регулируют расположение устьиц, развитие соцветий, 
функционирование апикальной и латеральной побеговых меристем, закладку проводящих тканей, фор-
мирование края листа, а также развитие цветков и плодов. Недавние исследования показали, что EPFL 
могут быть вовлечены в адаптацию растений к биотическим и абиотическим стрессам. В обзоре рас-
смотрены структура, механизмы передачи сигнала, филогенетическое распространение и функции пеп-
тидов семейства EPF/EPFL.
КЛЮЧЕВЫЕ СЛОВА регуляторные пептиды растений, цистеин-богатые пептиды, EPF/EPFL.
СПИСОК СОКРАЩЕНИЙ EPF – epidermal patterning factor; EPFL – epidermal patterning factor-like; АБК – 
абсцизовая кислота; МАП – митоген-активируемая протеинкиназа; МДА – малоновый диальдегид; 
МКМ – материнская клетка мегаспоры.

ВВЕДЕНИЕ
Растения, ведущие прикрепленный образ жизни, 
адаптируются к изменениям окружающей среды 
с помощью гибкой системы регуляции физиологи-
ческих процессов. Важную роль в адаптации игра-
ют сигнальные пептиды, контролирующие широкий 
спектр реакций, включая рост и развитие, половое 
размножение, межклеточную коммуникацию, старе-
ние, формирование симбиотических взаимодействий, 
а также устойчивость к патогенам и абиотическим 
стрессам [1, 2]. Первый растительный регуляторный 
пептид – системин – выделили в 1991 году из ли-
стьев томата [3]. С тех пор было описано множество 
семейств пептидов, образующихся либо путем про-
цессинга белков-предшественников, либо в результа-
те трансляции коротких открытых рамок [1, 4]. 

Пептиды, происходящие из белков-предшествен-
ников, делятся на три функционально и структурно 
различающиеся группы: посттрансляционно моди-
фицированные [5], цистеин-богатые и немодифици-
рованные, не содержащие остатков цистеина [6, 7]. 
Цистеин-богатые пептиды содержат четное число 
остатков цистеина, формирующих дисульфидные 
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СТРОЕНИЕ И ПЕРЕДАЧА СИГНАЛА
К цистеин-богатым пептидам растений, которые ус-
ловно можно разделить на защитные (антимикроб-
ные) и сигнальные, относится ряд семейств, включая 
EPF/EPFL [16]. Наиболее детально изучена структу-
ра защитных пептидов: проведен ЯМР-анализ мно-
гих из них, определены структурные детерминан-
ты антимикробной активности [17, 18]. Структурные 
особенности сигнальных цистеин-богатых раститель-
ных пептидов, включая семейство EPF/EPFL, изуче-
ны не столь глубоко, однако определена первичная 
и пространственная структура пептида EPFL9, вы-
деленного из апопласта A. thaliana [19, 20]. Более 
того, получены данные о структурных аспектах 
связывания ряда пептидов этого семейства с ре-
цептором [21]. У A. thaliana, классического модель-
ного объекта, на котором активнее всего проходит 
изучение этого семейства, выявлено 11 пептидов – 
EPF1–2 и EPFL1–9, включая EPFL9/Stomagen [22]. 
Первыми были охарактеризованы EPF1–2, а затем 
паралоги EPF1, в дальнейшем названные EPFL [23]. 
В результате филогенетического анализа пептиды 
семейства EPF/EPFL были разделены на четыре 
клады (рис. 1). Представители двух из них, EPF1–
EPF2–EPFL7 и EPFL9, изучены наиболее подробно. 

Как и большинство пептидных гормонов и анти-
микробных пептидов растений, пептиды семейства 
EPF/EPFL синтезируются в виде белков-предше-
ственников, состоящих из N-концевого сигнально-
го пептида, про-домена и зрелого пептида (рис. 2А) 
[24]. Cигнальный пептид направляет предшествен-
ник в эндоплазматический ретикулум, после чего 
отщепляется пептидазами и разрушается. Затем 
удаляется про-область и высвобождается зрелая 
форма пептида, способная взаимодействовать с ре-
цепторными комплексами [25].

Рис. 1. Множественное выравнивание зрелых пептидов семейства EPF/EPFL A. thaliana, полученное при помощи 
алгоритма Muscle. 1–4 – клады пептидов; аминокислотные остатки Cys отмечены желтым цветом. Три консерва-
тивные дисульфидные связи выделены черными скобками, четвертая дисульфидная связь, характерная для кла-
ды EPF1/EPF2/EPFL7, показана красным. Аминокислотные остатки Glu28 и Asp31 в EPFL9 выделены розовым. 
UniProt ID: EPF1: Q8S8I4; EPF2: Q8LC53; EPFL7: C4B8C5; EPFL9: Q9SV72; EPFL1: Q9LFT5; EPFL2: Q9T068; EPFL3: 
C4B8C4; EPFL4: Q2V3I3; EPFL5: Q9LUH9; EPFL6: Q1PEY6; EPFL8: Q1G3V9
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Рис. 2. Структура пептида EPFL9. А – структура про-
пептида [20]. Б – первичная структура пептида [19]. 
β-листы показаны голубыми стрелками, фрагмент 
спирали 3

10
 – розовый прямоугольник; остатки Cys 

отмечены желтым, дисульфидные связи – скобками. 
Отрицательно заряженные Glu28 и Asp31 в петлевой 
области выделены жирным. В – пространственная 
структура EPFL9 (PDB ID: 2LIY). Г – модель простран-
ственной структуры пептида EPFL7 A. thaliana, постро-
енная с помощью алгоритма AlphaFold3 [26]

Первичная структура пептидов семейства EPF/
EPFL обогащена остатками цистеина, из которых 
шесть консервативны для всего семейства, а два 
характерны только для клады EPF1/EPF2/EPFL7 
(рис. 1). Все пептиды семейства содержат мотив 
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Gly-Ser в N-концевой области. Известно, что этот 
мотив критичен для связывания пептидов с рецеп-
торами [21]. Также в N-концевой области присут-
ствует консервативный остаток Pro. Вероятно, что, 
изгибая полипептидную цепь, этот остаток обеспе-
чивает пространственную конформацию пептида.

По данным ЯМР-спектроскопии, полученным 
для EPFL9, трехмерная структура EPF/EPFL-
пептидов состоит из двух антипараллельных 
β-листов (скаффолда), соединенных петлевой об-
ластью (loop region), и стабилизированного дисуль-
фидными связями (рис. 2B). Петлевая область более 
вариабельна, чем скаффолд, она играет ключевую 
роль в специфичности связывания с рецепторами 
[19]. Пространственные структуры остальных пред-
ставителей семейства были получены путем гомоло-
гичного моделирования. 

Консервативные остатки цистеина участвуют 
в образовании дисульфидных связей, количество 
и расположение которых влияет на функциональ-
ную активность и конформацию пептида. Так, за-
мена остатков цистеина на серин в молекуле EPFL9 
приводила к утрате способности стимулировать за-
кладку устьиц [19]. С другой стороны, вариабельные 
участки могут определять специфичность функции 
пептидов. Например, пептиды EPF1–2 являются 
негативными регуляторами развития устьиц, тогда 
как EPFL9 выступает в роли позитивного регулято-
ра [20]. По-видимому, различие в физиологических 
ответах обусловлено особенностями строения петле-
вой области у этих пептидов [21]. 

Так, замена аминокислот петлевой области EPF2 
на последовательность EPFL9 приводила к смене 
функции пептида с ингибирования формирования 
устьиц на их активное развитие. В то же время 
химерный пептид, содержащий петлю EPF2 и кар-
кас EPFL9, обладал ингибирующим действием 
[19]. Рецепторами EPFL является семейство киназ 
ERECTA (ERf, ERECTA family), относящихся к кла-
де XIII LRR-RLK (Leucine-rich repeat receptor-like 
kinases, рецептороподобные киназы с лейцин-бо-
гатыми повторами). У Arabidopsis к этому семей-
ству относятся белки ERECTA (ER), ERECTA-LIKE 
1 (ERL1) и ERECTA-LIKE 2 (ERL2). Дальнейший 
путь передачи сигнала включает МАП-киназный 
(митоген-активируемая протеинкиназа) ка-
скад, состоящий у арабидопсиса из МАРKKK 
YODA, MKK4/5 и терминальных MPK3/6 [27]. 
Взаимодействие пептидов с рецептором зависит 
от того, находится ли рецептор в комплексе с LRR-
RLP (рецептороподобный белок с лейцин-богаты-
ми повторами) TMM (Too Many Mouth). Интересно, 
что для связывания EPF1/2 с рецепторами ERf не-
обходимо, чтобы ERf входили в комплекс с TMM, 

тогда как EPFL4 взаимодействует со всеми тремя 
ERf в отсутствие TMM [21].

ФИЛОГЕНИЯ. РАСПРОСТРАНЕНИЕ У РАСТЕНИЙ
Пептиды EPF и EPFL обнаружены только у на-
земных растений и не найдены у водорослей [28, 
29]. Это указывает на появление этого семейства 
лишь после выхода растений на сушу и, возможно, 
на важную роль в их адаптации к наземной жизни. 
Предполагается, что ключевые генетические компо-
ненты, обеспечивающие формирование устьичного 
аппарата, включая EPF/EPFL, возникли на ранних 
этапах эволюции наземных растений [30]. 

Последовательности пептидов консервативны 
у разных таксонов: у мха Physcomitrium patens 
идентифицирован PpEPF1, являющийся гомологом 
AtEPF1 и AtEPF2. Филогенетический анализ пока-
зывает, что PpEPF1 ближе к AtEPF1 и AtEPF2, чем 
AtEPFL9 к AtEPF1–2 [28]. Это довольно интересно, 
так как устьица у мхов устроены иначе, чем у цвет-
ковых, но механизм их развития, судя по всему, 
сходен [31, 32]. Помимо PpEPF1, у мха также иден-
тифицированы 10 пептидов семейства EPFL, функ-
ции которых пока не изучены [28]. При этом уже 
у цветковых растений гены, кодирующие предста-
вителей семейства EPF/EPFL, распределены по хро-
мосомам неравномерно, что может быть результатом 
дупликации генов [33, 34]. 

Филогенетически семейство этих пептидов 
у  арабидопсиса разделяют на четыре клады: 
EPF1–EPF2–EPFL7, EPFL9, EPFL1–3 и EPFL4–6–
EPFL8 (рис. 1) [28, 34]. Эти группы различаются 
как по структуре, так и по предполагаемым функ-
циям. Так, представители клады EPF1–EPF2–EPFL7 
несут четыре консервативные дисульфидные свя-
зи, одна из которых находится в петлевой области, 
в то время как в структуре пептидов остальных 
клад присутствует три дисульфидных мостика. Это 
отражается на способности пептидов связываться 
с рецепторными комплексами [21, 28].

Пептид EPFL9 представлен у всех исследо-
ванных сосудистых растений, начиная с плаунов 
(Selaginella moellendorffii), голосеменных и вплоть 
до цветковых [28]. При этом он отсутствует у мха P. 
patens, у которого найдены только гомологи EPF1/
EPF2. Интересно, что появление EPFL9, который 
является активатором развития устьиц, совпадает 
с резким увеличением плотности устьиц на поверх-
ности листьев, произошедшим в позднем девонском 
периоде, которое дает начало активному развитию 
макрофиллов – крупных листьев с развитой сосуди-
стой системой [28, 35]. 

В последние годы количество секвенированных 
растительных геномов увеличивается, что значи-
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тельно облегчает поиск и дальнейшую валидацию 
гомологов. Таким образом, биоинформатическими 
методами были проанализированы геномы боль-
шого количества сельскохозяйственных цветковых 
растений. В четырех геномах хлопчатника обнару-
жили 132 гена EPF/EPFL: 20 и 24 у диплоидных ви-
дов и по 44 гена у тетраплоидных [34]. В растениях 
картофеля идентифицировали 14 генов [36], рапса – 
27 [37]. У тополя волосистого Populus trichocarpa 
идентифицировано 15 генов EPF/EPFL [38], тогда 
как у тополя евфратского P. euphratica – 14 [33]. 
Гены EPFL обнаружены и у однодольных растений: 
у риса, сорго и ржи идентифицировано по 12 генов 
[39–41], у кукурузы – 18 [42], а у пшеницы 35 [43]. 
Широкое распространение представителей семей-
ства EPF/EPFL в разных линиях эволюции цветко-
вых и других растений подчеркивает их значение 
в адаптации к наземным условиям обитания, тогда 
как функции многих недавно идентифицированных 
гомологов остаются неясными и требуют дальней-
шего экспериментального изучения.

ЗАКЛАДКА УСТЬИЦ
Известно, что пептиды семейства EPF/EPFL регу-
лируют целый спектр морфогенетических программ, 
однако первой выявленной функцией этих пепти-
дов стала регуляция расположения устьиц (рис. 3, 
табл. 1) [10]. 

У арабидопсиса EPF1 экспрессируется в молодых 
листьях, а именно в клетках-предшественниках 
устьиц. Сверхэкспрессия EPF1 приводит к сниже-
нию количества устьиц, тогда как нокаут приводит 
к его увеличению и кластеризации [10]. Гомолог 
EPF1, EPF2 также ингибирует развитие устьиц: 
у растений со сверхэкспрессией гена EPF2 наблю-
дается снижение, а у растений с нокаутом – увели-
чение числа устьиц, однако они не образуют класте-
ры [13]. Оба пептида необходимы для соблюдения 
«правила одной клетки»: между устьицами должно 
находиться не менее одной клетки эпидермиса [10, 
13, 14]. EPF2 экспрессируется в предшественниках 
устьиц раньше, чем EPF1. То есть, EPF2 регулиру-
ет переход клеток к дифференцировке в устьица, 

Закладка устьиц

Функционирование 
апикальной 
меристемы

Функционирование латеральной 
меристемы и закладка 
проводящих тканей

Рост стручков

Развитие цветка

Регуляция архитектуры 
соцветия

Формирование 
зубчатого края листа

Рис. 3. Морфоге-
нетические процес-
сы, регулируемые 
пептидами семей-
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тогда как EPF1 контролирует дальнейшее развитие 
[10, 14, 15]. Пептид EPFL9, напротив, стимулирует 
развитие устьиц – сверхэкспрессия EPFL9 приво-
дит к увеличению плотности устьиц и их класте-
ризации, тогда как сайленсинг ингибирует развитие 
устьиц [45]. Показано, что EPF2 и EPFL9 связы-
ваются с рецептором ER, при этом EPFL9 конку-
рентно вытесняет EPF2 из этого комплекса [44]. 
Пептиды EPF1/2 секретируются клетками устьиц, 
связываются с ER и ERL1 и ингибируют диффе-
ренцировку устьиц, тогда как EPFL9 секретируется 
клетками мезофилла, конкурирует с EPF2 за свя-
зывание с ER и стимулирует образование устьиц 
[15, 44]. Таким образом, EPF1/2 и EPFL9 действуют 
как антагонисты в контроле плотности устьиц [44].

Наиболее подробно роль EPF исследована на при-
мере арабидопсиса, однако участие этих пептидов 
в регуляции развития устьиц показано и на других 
растениях. Например, сверхэкспрессия PeEPF2 то-
поля, гомолога AtEPF2, в растениях арабидопсиса 
с нокаутом по гену AtEPF2, приводила к сниже-
нию плотности устьиц на листе, восстанавливая 
мутантный фенотип [33]. Ортологи EPFL, вовле-

ченные в регуляцию развития устьиц у арабидоп-
сиса – AtEPF2 и AtEPFL9, обнаружены в геномах 
однодольных Triticum aestivum и Brachypodium 
distachyon [58]. Как и соответствующие пептиды 
у арабидопсиса, эти пептиды также оказывают про-
тивоположный эффект на развитие устьиц. 

Показано, что модуль EPF/TMM/ERECTA яв-
ляется довольно древним регулятором развития 
устьиц – его компоненты контролируют расположе-
ние устьиц у первых наземных растений, в част-
ности, у мха P. patens [59]. Устьица у P. patens об-
разуются на спорофите, и PpEPF1, гомолог EPF1/2 
арабидопсиса, негативно регулирует их развитие. 
Однако сверхэкспрессия PpEPF1 не способна вос-
становить нормальную плотность устьиц мутант-
ных по EPF2 растений арабидопсиса. В то же время 
у P. patens нет ортолога AtEPFL9 и сверхэкспрессия 
AtEPFL9 не влияет на плотность устьиц, что гово-
рит о том, что конкурентная регуляция закладки 
устьиц появилась на более поздних этапах эволю-
ции наземных растений [59].

Таким образом, пептиды EPFL – консервативные 
и довольно древние регуляторы развития устьиц 
у наземных растений.

ФУНКЦИОНИРОВАНИЕ АПИКАЛЬНОЙ МЕРИСТЕМЫ 
ПОБЕГА
Апикальная меристема побега является ключевой 
структурой, обеспечивающей рост надземных ор-
ганов растения. Ее пространственная организация, 
размер и активность строго регулируются сетью 
сигнальных каскадов, важную роль в которых игра-
ют в том числе пептиды семейства EPF/EPFL.

У A. thaliana пептиды EPFL1, EPFL2, EPFL4 
и EPFL6 экспрессируются преимущественно по пе-
риферии апикальной меристемы побега, а также 
в области границы между меристемой и закладыва-
ющимися листьями [48]. В то же время рецепторы 
ER, ERL1 и ERL2 активны в центральной зоне ме-
ристемы, что указывает на их участие в простран-
ственной регуляции клеточного деления и диффе-
ренцировки меристемы. Мутанты по EPFL1/2/4/6, 
а также ERf имеют схожий фенотип: увеличение 
размеров меристемы, снижение числа листовых 
примордиев и уменьшение общей биомассы расте-
ний [48]. Эти данные подтверждают гипотезу о том, 
что пептиды EPFL и рецепторы ER демонстрируют 
функциональную избыточность в регуляции разме-
ра апикальной меристемы побега и инициации роста 
листьев [60].

У мутантов по гену EPFL2 наблюдаются нару-
шения симметрии и равномерности закладки ор-
ганов, а также изменения числа ауксиновых мак-
симумов в апикальной меристеме побега [49]. Это 

Таблица 1. Функции пептидов семейства EPF/EPFL 
у A. thaliana 

Пептид Функция Ссылка

AtEPF1/2 Ингибирование формирова-
ния устьиц

[10, 13, 15, 
23, 44]

AtEPFL9 
(STOMAGEN)

Стимуляция образования 
устьиц

[11, 15, 44, 
45]

Удлинение стручка [46]

AtEPFL2

Формирование зубчатого 
края листа [47]

Равномерная закладка 
семязачатков и увеличение 

их числа в стручке
[46]

AtEPFL1/2/4/6 

Регуляция функционирова-
ния апикальной меристемы [48–51]

Повышение устойчивости 
к патогену [52]

Удлинение соцветий и цве-
тоножек [53]

Формирование единственной 
материнской клетки мега-

споры
[54]

AtEPFL1–6 Обрастание нуцеллуса инте-
гументами [55]

AtEPFL4–6 
Удлинение тычиночных 

нитей за счет стимуляции 
пролиферации клеток

[56, 57]
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согласуется и с результатами другого исследова-
ния, согласно которому у мутантов epfl2 наблюда-
лось изменение количества максимумов ауксина, 
приводящее к изменению формы листьев и семя-
долей [50]. 

Кроме того, показано что обработка синтетиче-
скими пептидами EPFL4 и EPFL6 ограничивает 
латеральный рост меристемы, снижая экспрессию 
ключевых регуляторов апикальной меристемы – 
CLV3 (CLAVATA3) и WUS (WUSCHEL) – при уча-
стии рецепторов ERf [51]. Взаимодействие между 
этими пептидами и их рецепторами регулирует 
не только размер, но и границы меристемы, что спо-
собствует контролю за числом инициируемых орга-
нов и нормальным развитием растений.

Таким образом, EPFL играют важную роль в про-
странственно-временной регуляции активности апи-
кальной меристемы побега.

РЕГУЛЯЦИЯ ЛАТЕРАЛЬНОЙ МЕРИСТЕМЫ 
И ЗАКЛАДКИ ПРОВОДЯЩИХ ТКАНЕЙ
Регуляция латеральной меристемы и закладки про-
водящих тканей является ключевым процессом, 
обеспечивающим правильное развитие как веге-
тативных, так и репродуктивных органов. В регу-
ляции функционирования латеральных меристем 
гипокотилей и соцветий арабидопсиса участвуют 
рецепторные киназы ER и ERL1 [61–63]. Так, об-
наружена экспрессия генов ER и ERL1, но не ERL2 
в центральном цилиндре гипокотиля [61]. Двойные 
мутанты по генам ER и ERL1 отличаются от рас-
тений дикого типа утолщением гипокотилей за счет 
увеличения ксилемы, при этом в такой ксилеме 
была повышена доля клеток с лигнифицированны-
ми клеточными стенками [61]. То есть, ER и ERL1 
предотвращают чрезмерное развитие ксилемы в ги-
покотилях.

Киназы ER и ERL1 регулируют также развитие 
прокамбия в стеблях соцветий [62, 63]. У двойных 
мутантов по генам ER и ERL1 наблюдалось нару-
шение строения проводящих пучков – слой прокам-
бия был прерывистым, в некоторых местах ксилема 
и флоэма соприкасались. Показано, что ER и ERL1 
экспрессируются в ксилеме и флоэме, причем имен-
но флоэмная экспрессия гена ER является опреде-
ляющей для регуляции анатомической структуры 
стебля соцветия [62]. Предполагается, что в этот 
процесс вовлечены пептиды EPFL4 и EPFL6, кото-
рые экспрессируются в эндодерме и связываются 
с ER. Однако у двойного мутанта по генам EPFL4 
и EPFL6 не было нарушено строение проводящих 
пучков, поэтому вопрос о том, какие именно EPFL 
участвуют в регуляции функционирования лате-
ральных меристем, все еще остается открытым.

Таким образом, показано, что рецепторы ER 
и ERL1 и, по-видимому, их лиганды участвуют 
в контроле образования и функционирования лате-
ральных меристем и закладке проводящих тканей.

ФОРМИРОВАНИЕ ЗУБЧАТОГО КРАЯ ЛИСТА 
Еще одна роль пептидов семейства EPFL – это 
регуляция формирования зубчатого края листо-
вой пластинки [47]. У арабидопсиса этот процесс 
регулирует пептид EPFL2 совместно с рецептора-
ми ER и ERL1/2. Мутанты по гену EPFL2, а также 
двойные мутанты по киназам ERf характеризуют-
ся отсутствием зубцов по краю листовой пластин-
ки. Взаимодействие EPFL2 с каждой из трех ERf 
подтвердили при помощи коиммунопреципитации 
[47]. Ген EPFL2 экспрессируется в растущих ли-
стьях за исключением кончиков зубцов и разви-
вающихся жилок [47]. Интересно, что экспрессия 
ERL2 контрастирует экспрессии EPFL2: она обна-
ружена в кончиках зубцов и жилках, в то время 
как ER и ERL1 экспрессируются во всей листовой 
пластинке. Таким образом, регуляторный модуль 
EPFL2-ERf подавляет ответ на ауксин, ограничи-
вая его небольшим количеством клеток на кончике 
растущего зубца.

РАЗВИТИЕ ГЕНЕРАТИВНЫХ ОРГАНОВ
В ходе эволюции у цветковых растений возникли 
сложные и разнообразные структуры для размно-
жения, в формировании которых, начиная с регу-
ляции архитектуры соцветия и заканчивая обра-
зованием семян, важную роль играют пептиды 
EPF/EPFL. 

EPFL4/6, а также в меньшей степени EPFL1/2 
вместе с ERf стимулируют удлинение соцветий 
и цветоножек у A. thaliana [53]. При этом EPFL4/6, 
выступающие лигандами ER, экспрессируются 
в клетках эндодермы, а ген ER экспрессируется 
в клетках эпидермы, флоэмы и ксилемы. Однако 
для формирования нормальной архитектуры со-
цветия важна рецепция сигнала именно во флоэме, 
так как экспрессия ER под специфичным для фло-
эмы промотором гена SUC1 восстанавливала фено-
тип мутантов er. Экспрессия ER под промоторами, 
активными в ксилеме и эпидерме, подобного эффек-
та не давала [53]. Таким образом, пептиды EPFL4/6 
экспрессируются в клетках эндодермы соцветий, 
мигрируют во флоэму, где связываются с ER и сти-
мулируют рост стебля соцветия и цветоножек [53]. 
Транскриптомные данные показывают, что у мутан-
тов A. thaliana er-2 и epfl4/6 значительная часть 
дифференциально экспрессируемых генов является 
компонентами ауксинового и гиббереллинового от-
вета. В частности, подавляется экспрессия ARGOS, 
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стимулирующего рост надземных органов [64], 
и транскрипционного фактора WRKY15 [53].

Роль пептидов EPFL в регуляции архитектуры 
соцветия показана и у риса. Так, OsEPFL5–9 ре-
гулируют архитектуру метелки и размер зерен. 
При этом OsEPFL6–9 снижают количество коло-
сков на метелку, а OsEPFL5 – повышает, то есть 
является их антагонистом [65]. Дальнейшая переда-
ча сигнала OsEPFL6–9 идет через рецептор OsER1 
и МАП-киназный каскад, содержащий OsMKKK10–
OsMKK4–OsMPK6 [65, 66].

Пептиды семейства EPFL контролируют не толь-
ко развитие соцветий в целом, но и мужских и жен-
ских половых органов, и образующихся плодов. 
У растений арабидопсиса EPFL4/5/6 стимулируют 
удлинение тычиночных нитей за счет регуляции 
пролиферации клеток [56, 57]. У тройных мутан-
тов по генам EPFL4/5/6 нарушается самоопыление 
и наблюдается мужская стерильность, поскольку 
тычинки оказываются существенно короче, чем пе-
стик [57]. При более низкой температуре нарушение 
самоопыления происходит уже у одиночного мутан-
та epfl6 [56]. При этом ER опосредует удлинение 
не только тычинок, но и пестика [56]. 

EPFL1 T. aestivum и EPFL6 Brassica napus также, 
по всей видимости, регулируют морфологию органов 
цветка. Их сверхэкспрессия в растениях A. thaliana 
уменьшала число тычинок и их длину относительно 
пестика [67, 68]. 

Пептиды EPFL также могут регулировать разви-
тие стручков у A. thaliana. EPFL9 совместно с ER 
способствует удлинению стручка, тогда как EPFL2 
экспрессируется в промежутках между примор-
диями семяпочек и, взаимодействуя с рецептора-
ми ERL2 и ERL1, увеличивает число семязачатков 
в стручке и повышает равномерность закладки их 
примордиев [46]. Интересно, что EPFL9 и EPFL2 
могут выступать антагонистами, так как экспрессия 
EPFL9 под промотором EPFL2 приводила к феноти-
пу, сходному с фенотипом мутанта epfl2 [46].

EPFL1/2/4/6 контролируют также начальные эта-
пы развития женского гаметофита. Эти пептиды 
нужны для выделения единственной материнской 
клетки мегаспоры (МКМ), препятствуя как образо-
ванию многочисленных МКМ, так и их отсутствию 
[54].

На более поздних стадиях развития семязачат-
ка EPFL1–6 обеспечивают обрастание нуцеллуса 
интегументами [55]. Гены EPFL1–6, ER и ERL1/2 
экспрессируются на разных стадиях развития се-
мязачатка, тогда как мутации по этим генам при-
водят к нарушению формирования интегумента. 
SERK1/2/3 при этом выступают в качестве корецеп-
тора: показано взаимодействие SERK с киназами 

семейства ERf, которое усиливается в присутствии 
экзогенных пептидов EPFL4/6 [55].

Пептиды EPF/EPFL контролируют такой важ-
ный сельскохозяйственный признак риса, как нали-
чие ости у зерновки. Ген EPFL1 дикого риса Oryza 
rufipogon активно экспрессируется в развивающих-
ся соцветиях и обеспечивает формирование более 
длинных зерновок с остью и метелок с меньшим 
количеством зерновок [69]. Мутации, изменяющие 
число остатков цистеина в OsEPFL1, обнаружены 
у большинства безостных культурных сортов риса 
O. sativa, а аллель EPFL1 африканского культурного 
риса O. glaberrima определял появление остистых 
зерен у O. sativa ssp. japonica [69]. При этом у сорта 
O. sativa ssp. aus cv. Kasalath наличие ости у зер-
новки определяется другими генами EPF/EPFL: 
у одиночного мутанта по гену OsEPFL1 ости со-
храняются, а мутант osepfl2 остей не имеет и фор-
мирует более короткие зерновки меньшей массы 
и с меньшим числом клеток в продольном сече-
нии. OsEPF2, OsEPFL7, OsEPFL9, OsEPFL10 также 
вносят вклад в развитие ости. По генам OsEPFL1/
GAD1/RAE2 и OsEPFL2/9/10 шел отбор в процессе 
доместикации риса [39, 69]. 

Функции пептидов EPFL в развитии репро-
дуктивной сферы растения крайне многообразны. 
Представители данного семейства контролируют 
архитектуру соцветия, рост органов цветка и пра-
вильное формирование женского гаметофита. 

АБИОТИЧЕСКИЕ СТРЕССЫ
В последние годы ведется активный поиск и анно-
тирование генов, кодирующих пептиды семейства 
EPF/EPFL, у различных сельскохозяйственных 
растений. Часто обнаруживается, что промоторные 
области этих генов содержат цис-регуляторные 
элементы, связанные с ответами на стрессовые воз-
действия и фитогормоны [33, 34, 36, 40, 41]. Более 
того, экспериментально подтверждено, что экспрес-
сия отдельных EPF/EPFL регулируется данными 
факторами. Это позволяет предположить, что EPF/
EPFL могут играть роль в формировании устойчи-
вости растений к стрессовым условиям.

Так, экспрессия EPFL8 повышается при обработ-
ке растений кукурузы абсцизовой кислотой (АБК), 
метилжасмонатом и салициловой кислотой, тогда 
как экспрессия ряда других EPFL в тех же услови-
ях снижается [34]. Кроме того, водный дефицит мо-
жет вызывать изменения экспрессии сразу несколь-
ких EPFL, что косвенно указывает на их возможное 
участие в регуляции ответа на засуху [34, 70]. 
У ржи обнаружены как индуцируемые, так и инги-
бируемые при осмотическом стрессе EPFL, а также 
выявлены два EPFL, индуцируемых высокой темпе-
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ратурой [40]. Показано достоверное снижение экс-
прессии семи генов EPF рапса при солевом стрессе 
[37]. Дифференциально экспрессируемые в ответ 
на осмотический стресс гены EPFL идентифициро-
ваны также у сорго, картофеля, тополя, яблони [33, 
36, 41, 71]. 

Известно, что EPF1/2 ингибируют образование 
устьиц у A. thaliana, тогда как EPFL9 стимулиру-
ет [10, 13, 45]. При этом плотность расположения 
устьиц и интенсивность транспирации определяют 
устойчивость растения к засухе. Сравнение экс-
прессии генов EPF/EPFL у устойчивого и чувстви-
тельного к засухе сортов яблони Malus domestica 
показало, что экспрессия ортолога AtEPF2, MdEPF2, 
сильнее индуцируется засухой в листьях устойчи-
вого сорта [71]. Обработка АБК – ключевым регу-
лятором ответа на осмотический стресс – также 
индуцировала экспрессию MdEPF2. Растения то-
мата, сверхэкспрессирующие MdEPF2, отличались 
повышенной устойчивостью к осмотическому стрес-
су. При засухе у таких растений была больше био-
масса, выше скорость фотосинтеза и относительное 
содержание воды, меньше содержание малонового 
диальдегида (МДА), маркера окислительного стрес-
са, и пероксида водорода, а активность антиокси-
дантных ферментов выше, чем у растений дикого 
типа [71]. Основным морфологическим эффектом 
сверхэкспрессии MdEPF2 было снижение количе-
ства устьиц, что можно рассматривать как причину 
большей устойчивости таких растений к осмотиче-
скому стрессу. 

Ранее изучали физиологическую роль ортолога 
AtEPF2, PdEPF2, обнаруженного в геноме тополя 
[72]. PdEPF2, экспрессия которого индуцировалась 
засухой и АБК, сверхэкспрессировали в растениях 
арабидопсиса, которые оказались более устойчи-
выми к засухе, в условиях осмотического стресса 
у них было повышено содержание пролина и интен-
сивность фотосинтеза.

У картофеля также выявлены EPF/EPFL, экс-
прессия которых отвечает на засуху: экспрес-
сия трех генов растет, а одного (EPF4) падает [36]. 
Получили растения с нокдауном и сверхэкспресси-
ей EPF4. Показали, что нокдаун этого гена приво-
дит к повышению устойчивости к засухе – отно-
сительное содержание воды, содержание пролина 
и активность антиоксидантных ферментов (SOD, 
POD, CAT) у таких растений при засухе выше, чем 
у растений дикого типа, а МДА – ниже. При этом 
у растений, сверхэкспрессирующих EPF4 при за-
сухе, обнаруживались противоположные эффекты 
[36]. Изменение экспрессии EPF4 влияло на плот-
ность устьиц – в растениях с нокдауном EPF4 она 
была ниже, а со сверхэкспрессией этого гена выше, 

чем у растений дикого типа. Возможно, что негатив-
ная роль EPF4 в регуляции ответа на осмотический 
стресс связана с его действием на формирование 
устьиц.

Совокупность геномных и физиологических 
данных, полученных на различных сельскохозяй-
ственных культурах, указывает на потенциальную 
вовлеченность пептидов семейства EPF/EPFL в ре-
гуляцию ответа растений на абиотические стрессы, 
прежде всего, на засуху. Чаще всего в качестве наи-
более вероятного механизма действия этих пепти-
дов рассматривают контроль устьичной плотности 
и транспирации, однако нельзя исключить суще-
ствование и других механизмов. При этом разные 
члены семейства могут выполнять как положи-
тельную, так и отрицательную регуляторную роль, 
что подчеркивает функциональное разнообразие 
EPF/EPFL и необходимость дальнейших исследова-
ний их специфических функций в различных физи-
ологических контекстах.

БИОТИЧЕСКИЙ СТРЕСС
Изменение экспрессии различных представителей 
EPF/EPFL в ответ на заражение фитопатогенными 
грибами показано у нескольких видов растений. Так, 
заражение мха P. patens патогенным грибом Botrytis 
cinerea существенно снижало экспрессию шести ге-
нов, кодирующих предсказанные пептиды семей-
ства EPFL [73]. Показано, что экспрессия EPFL1–6 
и EPFL9 A. thaliana увеличивалась после инокуля-
ции Sclerotinia sclerotiorum, тогда как экспрессия 
остальных представителей семейства EPF/EPFL 
не изменялась [52]. В то же время воздействие 
биотического стресса разнонаправленно влияло 
на экспрессию генов EPF/EPFL в растениях томата 
Solanum lycopersicum: так инфицирование фитопа-
тогеном Fusarium oxysporum f. sp. lycopersici приво-
дило к повышению экспрессии SlEPF7 и снижению 
экспрессии SlEPF1/5, а обработка элиситорами из не-
патогенного для томата штамма F. sambicinum повы-
шала экспрессию SlEPF6/7 и снижала SlEPF3/5 [74].

Изменение экспрессии сразу нескольких генов 
EPF/EPFL при взаимодействии с фитопатогена-
ми позволяет предположить, что пептиды этого 
семейства могут совместно регулировать защит-
ные механизмы растения. Так, рост S. sclerotiorum 
и продукция H2O2 у мутантов Arabidopsis epfl1,2,4,6 
существенно повышались, тогда как одиночные му-
танты не отличались от растений дикого типа [52]. 
Кроме того, у мутантов epfl1,2,4,6 существенно сни-
жалась индуцируемая патогеном экспрессия генов, 
относящихся к YODA DOWNSTREAM (YDD). YDD – 
это группа генов, позитивно регулируемых у му-
тантов с конститутивно активной YODA [52]. С дру-
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гой стороны, индуцибельная экспрессия EPF1/2 
у A. thaliana не повышала устойчивость растений 
к некротрофному грибу Plectosphaerella cucumerina 
[75]. Как известно, многие патогены проникают 
в ткани растения через устьица, поэтому ослабле-
ние устойчивости мутантов по ERf, по-видимому, 
можно связать с увеличением числа устьиц. Так, по-
сле обработки EPFL9 число устьиц увеличивалось 
и симптомы заражения усиливались [76].

Таким образом, данные об участии пептидов 
EPF/EPFL в регуляции ответа на биотический 
стресс крайне скудны. При этом неоднократно по-
казано участие рецепторов и компонентов сигналь-
ного пути пептидов EPF/EPFL в обеспечении устой-
чивости к фитопатогенам. Так, у мутантов по гену 
ER снижалась устойчивость к бактерии Ralstonia 
solanacearum [77], оомицету Pythium irregulare 
[78], патогенным грибам Verticillium longisporum 
[79], S. sclerotiorum [80] и P. cucumerina [81, 82]. 
Дополнительный нокаут генов ERL1/2 и TMM уси-
ливал развитие инфекции [75, 80]. 

Однако снижение устойчивости к R. solanacearum 
при инокуляции патогена через поврежденные 
корни [77] указывает на то, что уязвимость er мо-
жет быть связана не только с увеличением числа 
устьиц, но и с ингибированием защитного ответа 
растения. В пользу этого говорит снижение экс-
прессии патоген-индуцируемых генов WRKY33, 
WRKY53, CYP79B2 и CYP81F2 у мутантов er, bak1 
и er bak1 [75].

В то же время активность ER не влияла на экс-
прессию генов, индуцируемых flg22 – 22-аминокис-
лотным эпитопом, производным флагеллина [75]. 
Также мутанты er были не менее устойчивы к за-
ражению B. cinerea, F. oxysporum f. sp. conglutinans 
и Peronospora parasitica, чем растения дикого 
типа [81]. Таким образом, ER не всегда необхо-
дим для формирования устойчивости к патогенам. 
Возможно, но не обязательно, это связано с функци-
ональной избыточностью рецепторов EPFL.

ER регулирует ответ арабидопсиса на заражение 
S. sclerotiorum, влияя на связывание транскрипци-
онного фактора WRKY33 с промоторами генов YDD 
[80]. В этом процессе участвует хроматинремодели-
рующий комплекс SWR1 и регуляторный модуль 
ER-MPK6-WRKY33. SWR1 способствует связыва-
нию W-box транскрипционного фактора WRKY33 

с промоторами и активации экспрессии генов YDD, 
которые необходимы для поддержания устойчиво-
сти растения к заражению S. sclerotiorum [80, 83]. 

Поскольку EPF/EPFL-пептиды известны в пер-
вую очередь как регуляторы развития устьиц, их 
роль в контроле адаптации к стрессам часто пы-
таются связать с количеством устьиц, но, по-
видимому, роль данной группы пептидов при стрес-
се обширнее и нуждается в дальнейшем изучении. 

ЗАКЛЮЧЕНИЕ
Несмотря на значительное расширение знаний 
о пептидах семейства EPF/EPFL, в понимании их 
функций остаются важные пробелы. Так, подавля-
ющее большинство функциональных исследова-
ний EPF/EPFL проведено на модельном растении 
A. thaliana. Более того, хотя гомологи генов EPF/
EPFL идентифицированы у представителей различ-
ных групп покрытосеменных, их функциональный 
анализ в этих таксонах практически не проводился. 
Это особенно актуально в контексте филогенетиче-
ского разнообразия растений, поскольку результаты, 
полученные на Arabidopsis, могут не полностью от-
ражать спектр биологических функций EPFL в дру-
гих видах.

Дополнительные сложности в изучении этих пеп-
тидов обусловлены функциональной избыточностью: 
многие представители семейства могут частично 
компенсировать друг друга, что затрудняет оценку 
вклада отдельных представителей. По этой причине 
значительная часть исследований основана на ана-
лизе мутантов по рецепторам, которые также де-
монстрируют частичную избыточность, но число их 
существенно меньше.

На сегодняшний день показано, что экспрессия 
EPFL может меняться при биотических и абиоти-
ческих воздействиях, однако связь между пептид-
ной регуляцией и адаптивными реакциями растений 
не до конца ясна.

Управление активностью EPFL и их рецепторов 
потенциально может быть использовано для опти-
мизации морфогенеза, повышения устойчивости 
к стрессам и, как следствие, для улучшения сель-
скохозяйственных культур. 

Работа выполнена при поддержке Российского 
научного фонда (проект № 23-74-10048).
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